Е.В. Троицкий - Аналитическая геометрия (лекции) (1113350), страница 7
Текст из файла (страница 7)
®«¿°»¥, ±´¥°¨·¥±ª¨¥ ¨ ¶¨«¨¤°¨·¥±ª¨¥ ª®®°¤¨ ²»¯°¥¤¥«¥¨¥ 8.1. ®°¨¥²¨°®¢ ®© ¯«®±ª®±²¨¨«¨ ¯®«¾±®¬, ¨ «³· , ¢»µ®¤¿¹¥£®®«¿° ¿ ±¨±²¥¬ ª®®°¤¨ ²§ ¤ ¥²±¿ ¢»¡®°®¬ ²®·ª¨ O, §»¢ ¥¬®© · «®¬¨§ ²®·ª¨ O, §»¢ ¥¬®£® ¯®«¿°®© ®±¼¾.32®«¿°»¥ ª®®°¤¨ ²» ²®·ª¨ M | ½²® ° ¤¨³±, ° ¢»© ° ±±²®¿¨¾ ®² M ¤®¯®«¾± : r = jOM j, ¨ ³£®« ', ° ¢»© ³£«³ ¬¥¦¤³ ¯®«¿°®© ®±¼¾ ¨ «³·®¬ OM ,¯°¨·¥¬ ³£®« ¨§¬¥°¿¥²±¿ ¢ ±®®²¢¥²±²¢¨¨ ± ®°¨¥² ¶¨¥© (² ª¨¬ ®¡° §®¬ ' ¿¢«¿¥²±¿¢¥¹¥±²¢¥»¬ ·¨±«®¬, ®¯°¥¤¥«¥»¬ ± ²®·®±²¼¾ ¤® 2k, k 2 Z).
«¿ ²®·ª¨ O ³£®«' ¥ ®¯°¥¤¥«¿¥²±¿, ² ª ·²® ¯®«¿°»¥ ª®®°¤¨ ²» ¢ ½²®© ²®·ª¥ ¥ ®¯°¥¤¥«¥». ±«¨ ³ ± ¨¬¥¥²±¿ ¯®«®¦¨²¥«¼»© ¯°¿¬®³£®«¼»© °¥¯¥°, · «® ª®®°¤¨ ² ª®²®°®£® ±®¢¯ ¤ ¥² ± ¯®«¾±®¬, ¢¥ª²®° ~e ¯° ¢«¥ ¯® ¯®«¿°®© ®±¨, ²® £®¢®°¿²,·²® ¤ »¥ ¯°¿¬®³£®«¼ ¿ ¨ ¯®«¿° ¿ ±¨±²¥¬» ª®®°¤¨ ² ¥±²¥±²¢¥® ±¢¿§ ».¥¯®±°¥¤±²¢¥® ¨§ ®¯°¥¤¥«¥¨¿ ¯®«³· ¥¬ ±«¥¤³¾¹¥¥ ³²¢¥°¦¤¥¨¥.1²¢¥°¦¤¥¨¥ 8.2.«¿ ¥±²¥±²¢¥® ±¢¿§ »µ ¯°¿¬®³£®«¼®© ¨ ¤¥ª °²®¢®© ±¨-±²¥¬ ª®®°¤¨ ² ¨¬¥¾² ¬¥±²® ±«¥¤³¾¹¨¥ ´®°¬³«», ¢»° ¦ ¾¹¨¥ ®¤¨ ·¥°¥§ ¤°³-(£¨¥:p' (± ²®·®±²¼¾ ¤® ³£« 2k ) ®¯°¥¤¥«¿¥²±¿ ´®°¬³« ¬¨cos ' = p x ;sin ' = p y ;x +yx +y¨«¨y 8>arctg¯°¨ x > 0;x ; >< + arctgy ;¯°¨ x < 0;x'=>2;¯°¨ x = 0; y > 0;>: ==2;¯°¨ x = 0; y < 0: ¯°®±²° ±²¢¥ ¨¬¥¾²±¿ ¤¢ ¥±²¥±²¢¥»µ ®¡®¡¹¥¨¿ ¯®«¿°®© ±¨±²¥¬» ª®®°¤¨ ².
»¡¥°¥¬ ¢ ¯°®±²° ±²¢¥1) ®°¨¥²¨°®¢ ³¾ ¯«®±ª®±²¼ (½ª¢ ²®°¨ «¼ ¿ ¯«®±ª®±²¼ ),2) ²®·ª³ O ¥© (¯®«¾± ),3) «³· Ox ¯«®±ª®±²¨ (¯®«¿° ¿ ®±¼ ),4) ¯¥°¯¥¤¨ª³«¿°³¾ ª ®±¼ Oz (§¥¨² ¿ ®±¼ ).«¿ ¯°®¨§¢®«¼®© ²®·ª¨ M ¯°®±²° ±²¢ ®¡®§ ·¨¬ ·¥°¥§ M 0 ¥¥ ®°²®£® «¼³¾¯°®¥ª¶¨¾ , ·¥°¥§ M 00 | ¥¥ ®°²®£® «¼³¾ ¯°®¥ª¶¨¾ Oz.¨«¨¤°¨·¥±ª¨¥ ª®®°¤¨ ²» (; '; z ) ²®·ª¨ M ®¯°¥¤¥«¿¾²±¿ ±«¥¤³¾¹¨¬ ®¡° §®¬: ; ' | ¯®«¿°»¥ ª®®°¤¨ ²» M 0 ¯«®±ª®±²¨ (². ¥. = jOM 0 I , ' | ³£®«®² Ox ª OM 0), z | ª®®°¤¨ ² M 00 ®±¨ Oz. «¿ ²®·¥ª §¥¨²®© ®±¨ = 0, ª®®°¤¨ ² ' ¥ ®¯°¥¤¥«¥ .´¥°¨·¥±ª¨¥ ª®®°¤¨ ²» (r; '; ) ²®·ª¨ M ®¯°¥¤¥«¿¾²±¿ ±«¥¤³¾¹¨¬ ®¡° §®¬: r = jOM j (° ¤¨³± ),¡° ²®,r = x +yx = r cos 'y = r sin ':22, 222332 ' | ³£®« ®² Ox ª OM 0 (), | ³£®« ®² OM 0 ª OM (±® § ª®¬ ±®®²¢¥²±²¢¨¿ ¯° ¢«¥¨¾ Oz) (), 2 [ =2; =2].«¿ ²®·¥ª §¥¨²®© ®±¨ = =2, ª®®°¤¨ ² ' ¥ ®¯°¥¤¥«¥ .
«¿ ²®·ª¨ O:¤®«£®² ¸¨°®² r = 0, ' ¨ ¥ ®¯°¥¤¥«¥». ±±¬®²°¨¬ ¯°¿¬®³£®«¼³¾ ±¨±²¥¬³ ª®®°¤¨ ² Oe e e , £¤¥ ~e ¨¬¥¥² ¯° ¢«¥¨¥ Ox, ~e 2 , ¯°¨·¥¬ ®°¨¥² ¶¨¿ ~e ;~e ¯®«®¦¨²¥«¼ ¤«¿ ¯«®±ª®±²¨ , ~e ¨¬¥¥² ¯° ¢«¥¨¥ ®±¨ Oz.
®¢®°¿², ·²® ¤ ¿ ¯°¿¬®³£®«¼ ¿ ±¨±²¥¬ ª®®°¤¨ ² ¥±²¥±²¢¥® ±¢¿§ ± ³ª § »¬¨ ¢»¸¥ ±´¥°¨·¥±ª®© ¨ ¶¨«¨¤°¨·¥±ª®©.®£¤ ¯°¿¬®³£®«¼»¥ ¨ ¶¨«¨¤°¨·¥±ª¨¥ ª®®°¤¨ ²» ±¢¿§ » ´®°¬³« ¬¨:8 z = z;>8p>>>< x = cos ';< = x +y ;y = sin ';cos ' = pxx2 y2 ;>>: z = z;>>: sin ' = pxy2 y2 ;1 2 32112322++(ª®¥·®, ¬®¦® ¯®«³·¨²¼ ¡®«¥¥ ª®ª°¥²»¥ ¢»° ¦¥¨¿, ª ª ¤«¿ ¯®«¿°»µ ª®®°¤¨ ²).°¿¬®³£®«¼»¥ ¨ ±´¥°¨·¥±ª¨¥ ª®®°¤¨ ²» ±¢¿§ » ´®°¬³« ¬¨:8 r = px +y ;>8>>>< x = cos cos ';< = arcsin px2 zy2 z2 ;y = cos sin ';cos ' = pxx2 y2 ;>>: z = sin ;>>: sin ' = pxy2 y2 ;22+++p+(¯®±ª®«¼ª³ r cos = x + y ).229.
««¨¯±, £¨¯¥°¡®« ¨ ¯ ° ¡®« ()9.1. ¥®¬¥²°¨·¥±ª®¥ ®¯°¥¤¥«¥¨¥ ¯°¥¤¥«¥¨¥ 9.1. ««¨¯±®¬ §»¢ ¥²±¿ £¥®¬¥²°¨·¥±ª®¥ ¬¥±²® ²®·¥ª () X ¯«®±ª®±²¨, ±³¬¬ ° ±±²®¿¨© ª®²®°»µ ¤® ¤¢³µ ¤ »µ ²®·¥ª F ¨ F ° ¢ § ¤ ®¬³ ·¨±«³ (±¬. °¨±. 2):jF X j + jF X j = 2a:®·ª¨ F ¨ F §»¢ ¾²±¿ ´®ª³± ¬¨.°¥¤¯®« £ ¥²±¿, ·²® a > c 0, £¤¥ 2c = jF F j. ±«³· ¥ a = c ¯®«³· ¥¬ ®²°¥§®ª, ¢ ±«³· ¥ c = 0 | ®ª°³¦®±²¼.1112213422XDFF2c1DD2¨±. 2.¯°¥¤¥«¥¨¥ 9.2. §»¢ ¥²±¿ X ¯«®±ª®±²¨, ¬®¤³«¼ ° §®±²¨ ° ±±²®¿¨© ª®²®°»µ ¤® ¤¢³µ ¤ »µ ²®·¥ª F ¨ F ° ¢¥ § ¤ ®¬³ ·¨±«³ (±¬.°¨±. 3): jF X j jF X j = 2a:®·ª¨ F ¨ F §»¢ ¾²±¿ ´®ª³± ¬¨.¨¯¥°¡®«®©111222HHHHHHHHHHHHHHF1HHHHHH HHHH2cHHF2HHHHHHHHHHHHHH¨±.
3.°¥¤¯®« £ ¥²±¿, ·²® c > a > 0, £¤¥ 2c = jF F . ±«³· ¥ a = c ¯®«³· ¥¬ ¤¢ ¯°®²¨¢® ¯° ¢«¥»µ «³· , ¢»µ®¤¿¹¨µ ¨§ ´®ª³±®¢.¯°¥¤¥«¥¨¥ 9.3. ° ¡®«®© §»¢ ¥²±¿ X ¯«®±ª®±²¨, ° ¢®³¤ «¥»µ®² ¤ ®© ²®·ª¨ F , §»¢ ¥¬®© ´®ª³±®¬, ¨ ¯°¿¬®© d, §»¢ ¥¬®© ¤¨°¥ª²°¨±®© (±¬.°¨±. 4). °¥¤¯®« £ ¥²±¿, ·²® F 62 d.129.2. ª ª ª®¨·¥±ª¨¥ ±¥·¥¨¿¥®°¥¬ 9.4. ¥·¥¨¥ ¯°¿¬®£® ª°³£®¢®£® (¡¥±ª®¥·®£®35)¢ ®¡¥ ±²®°®»ª®³± drF¨±.
4.¯«®±ª®±²¼¾, ¥ ¯°®µ®¤¿¹¥© ·¥°¥§ ¢¥°¸¨³, ¿¢«¿¥²±¿ «¨¡® ½««¨¯±®¬, «¨¡® £¨¯¥°¡®«®©, «¨¡® ¯ ° ¡®«®©.®ª § ²¥«¼±²¢®. ª § ¿ ¯«®±ª®±²¼ ¬®¦¥² ° ±¯®« £ ²¼±¿ ²°¥¬¿ ±¯®±®¡ ¬¨:1) ¯¥°¥±¥ª ²¼ ®¤³ ¯®«®¢¨ª³ ª®³± ;2) ¯¥°¥±¥ª ²¼ ®¡¥ ¯®«®¢¨ª¨ ª®³± ;3) ¡»²¼ ¯ ° ««¥«¼®© ®¡° §³¾¹¥© ª®³± . °¨±³ª¥ ¨§®¡° ¦¥® ±¥·¥¨¥ ¯«®±ª®±²¼¾, ¯°®µ®¤¿¹¥© ·¥°¥§ ¢¥°¸¨³, ¨ ¯¥°¯¥¤¨ª³«¿°®© ¤ ®© (² ª ·²® ¤ ¿ ¯«®±ª®±²¼ ¨§®¡° ¦ ¥²±¿ ¯°¿¬®©):HHHHHHHHHH3HH HHHuHHHHHHHHHH HHHHHHHS2361®«¥¥ ²®·®, ¬» ¤®ª ¦¥¬, ·²® ¢ ±«³· ¥ 1 ¯®«³· ¥²±¿ ½««¨¯±, 2 | £¨¯¥°¡®« ¨3 | ¯ ° ¡®« .
±®¢»¬ £¥®¬¥²°¨·¥±ª¨¬ ¨±²°³¬¥²®¬ ¡³¤³² ¸ °» ¤¥«¥ |¸ °», ¢¯¨± »¥ ¢ ª®³± ¨ ª ± ¾¹¨¥±¿ ¤ ®© ¯«®±ª®±²¨.¥°¢»© ±«³· ©. ³±²¼ c | ¨²¥°¥±³¾¹¥¥ ± ±¥·¥¨¥ ª®³± ¯«®±ª®±²¼¾ .¡®§ ·¨¬ ·¥°¥§ F ¨ F ²®·ª¨ ª ± ¨¿ ¸ °®¢ ¤¥«¥ ¨ ¯«®±ª®±²¨ , ·¥°¥§ c¨ c | ®ª°³¦®±²¨ ª ± ¨¿ ¸ °®¢ ± ª®³±®¬. ³±²¼ X | ¯°®¨§¢®«¼ ¿ ²®·ª ±¥·¥¨¨ c. ³±²¼ X ¨ X | ²®·ª¨ ¯¥°¥±¥·¥¨¿ SX ± c ¨ c ±®®²¢¥²±²¢¥®.12121212®£¤ (° ¢» ª ± ²¥«¼»¥, ¯°®¢¥¤¥»¥ ª ¸ °³ ¨§ ®¤®© ²®·ª¨)jXF j = jXX j; jXF j = jXX j;jXF j + jXF j = jXX j + jXX j = jX X j = const:11²®°®© ±«³· ©.1221221®µ° ¨¬ ¯°¥¦¨¥ ®¡®§ ·¥¨¿.372®£¤ (° ¢» ª ± ²¥«¼»¥, ¯°®¢¥¤¥»¥ ª ¸ °³ ¨§ ®¤®© ²®·ª¨)jXF j = jXX j; jXF j = jXX j; jXF j jXF j = jXX j jXX j = jX X j = const:11°¥²¨© ±«³· ©.12212212 ½²®¬ ±«³· ¥ ¸ ° ¤¥«¥ ²®«¼ª® 1.³±²¼ c | ®ª°³¦®±²¼ ª ± ¨¿ ¸ ° ± ª®³±®¬, | ¯«®±ª®±²¼, ±®¤¥°¦ ¹ ¿½²³ ®ª°³¦®±²¼, ¯°¿¬ ¿ d = \ , Y | ¯°®¥ª¶¨¿ ¯°®¨§¢®«¼®© ²®·ª¨ X ¨±±«¥¤³¥¬®£® ±¥·¥¨¿ d, Y | ²®·ª ¯¥°±¥·¥¨¿ SX ± c .
ª ª ± ²¥«¼»¥ ª ¸ °³,¯°®¢¥¤¥»¥ ¨§ ®¤®© ²®·ª¨, ° ¢» jXF j = jXY j. «¥¥, SY , ±«¥¤®¢ ²¥«¼®, ¨XY ª«®¥ ª ¯«®±ª®±²¨ ¯®¤ ³£«®¬ =2 , £¤¥ | ³£®« ¬¥¦¤³ ®¡° §³¾¹¥©ª®³± ¨ ¥£® ®±¼¾. ¤°³£®© ±²®°®», Y X ¯ ° ««¥«¼ ²®© ¥¤¨±²¢¥®© ®¡° §³¾¹¥© ª®³± , ª®²®°®© ¯ ° ««¥«¼ ¯«®±ª®±²¼ .
·¨², ® ®¡° §³¥² ± ² ª¦¥³£®« =2 . «¥¤®¢ ²¥«¼®, jXY j = jXY j ª ª ª«®»¥ ª ¯«®±ª®±²¨ ¨§ ®¤®©²®·ª¨ ¯®¤ ®¤¨¬ ³£«®¬. ª¨¬ ®¡° §®¬, jXF j = jXY j.2¯°¥¤¥«¥¨¥ 9.5. ±®®²¢¥²±²¢¨¨ ± ½²®© ²¥®°¥¬®© ¥¹¥ §»¢ ¾² ª®¨ª ¬¨. ¬¥· ¨¥ 9.6. ®§¦¥ ¬» ¤®ª ¦¥¬ ²¥®°¥¬³ ¡®«¥¥ ®¡¹¥£® µ ° ª²¥° : ±¥·¥¨¥¯®¢¥°µ®±²¨ ¢²®°®£® ¯®°¿¤ª ¯«®±ª®±²¼¾ ¿¢«¿¥²±¿ ª°¨¢®© ¢²®°®£® ¯®°¿¤ª .1111111111119.3. ¯²¨·¥±ª¨¥ (´®ª «¼»¥) ±¢®©±²¢ ª®¨ª ¬¥· ¨¥ 9.7.
¥¸¨¬ ¢±¯®¬ £ ²¥«¼³¾ § ¤ ·³: ¤«¿ ¤ ®© ¯°¿¬®© l ¨ ¤¢³µ²®·¥ª A ¨ B , «¥¦ ¹¨µ ¯® ®¤³ ±²®°®³ ®² ¥¥, ©²¨ ² ª³¾ ²®·ª³ X 2 l, ·²®±³¬¬ ° ±±²®¿¨© jXAj + jXB j ¬¨¨¬ «¼ . ®±²°®¨¬ ²®·ª³ B 0, ±¨¬¬¥²°¨·³¾ B®²®±¨²¥«¼® l.38BAHHHHHHHHHHH@Xl@@@@@@@B0±®, ·²® jAX j + jXB 0j ¬¨¨¬ «¼® ¯°¨ X = (AB 0) \ l. ® jXB j = jXB 0j, ² ª ·²®¬¨¨¬³¬ ¤®±²¨£ ¥²±¿ ¯°¨ ° ¢¥±²¢¥ ®±²°»µ ³£«®¢, ®¡° §³¥¬»µ AX ¨ BX ± l. ¬¥· ¨¥ 9.8. ¦¤ ¿ ¨§ ª®¨ª ¨¬¥¥² ¢ ª ¦¤®© ±¢®¥© ²®·ª¥ ª ± ²¥«¼³¾.®·ª ª ± ¨¿ ¿¢«¿¥²±¿ ¥¤¨±²¢¥®© ²®·ª®© ¯¥°¥±¥·¥¨¿ ª®¨ª¨ ¨ ª ± ²¥«¼®©. ± ²¥«¼ ¿ ¿¢«¿¥²±¿ ¥¤¨±²¢¥®© ¯°¿¬®©, ³¤®¢«¥²¢®°¿¾¹¥© ½²®¬³ ²°¥¡®¢ ¨¾(ª°®¬¥ ¯°¿¬»µ, ¯ ° ««¥«¼»µ ®±¨ ¯ ° ¡®«»). ²³¨²¨¢® ½²¨ ³²¢¥°¦¤¥¨¿ ®·¥¢¨¤», ® ±²°®£®¥ ° ±±³¦¤¥¨¥ ²°¥¡³¥² § ¨¿ ³° ¢¥¨© ª®¨ª ¨ ±¯®±®¡ µ®¦¤¥¨¿ ª ± ²¥«¼®© ¯® ³° ¢¥¨¾ ( ² ª¦¥ ¤®ª § ²¥«¼±²¢ , ·²® ¯®±«¥ ¯®¤µ®¤¿¹¥©§ ¬¥» ª®®°¤¨ ² ½² \ «£¥¡° ¨·¥±ª¨" ®¯°¥¤¥«¥ ¿ ª ± ²¥«¼ ¿ ±² ¥² \ª ± ²¥«¼®© ª £° ´¨ª³").
®±«¥ ½²®£® ¬®¦® «¨²¨·¥±ª¨ ©²¨ ²®·ª³ ¯¥°¥±¥·¥¨¿ (°¥¸¨²¼ ±¨±²¥¬³) ¨ ³¡¥¤¨²¼±¿ ·²® ® °®¢® ®¤ . ¥®¡µ®¤¨¬»© ¬ ²¥°¨ « (ª®¥·®,¥ ¨±¯®«¼§³¾¹¨© °¥§³«¼² ²®¢ ¤ ®£® ¯³ª² ) ¡³¤¥² ° §®¡° ¯®§¦¥. ¬¥· ¨¥ 9.9. ±®¢®¥ ¯° ¢¨«® ®¯²¨ª¨ ª°¨¢»µ: «³· ®²° ¦ ¥²±¿ ®² ª°¨¢®© ª ª®² ¥¥ ª ± ²¥«¼®©.¥®°¥¬ 9.10.³·¨, ¢»µ®¤¿¹¨¥ ¨§ ®¤®£® ´®ª³± ½««¨¯± ,ª®¶¥²°¨°³-¾²±¿ ¢ ¤°³£®¬.³·¨, ¢»µ®¤¿¹¨¥ ¨§ ®¤®£® ´®ª³± £¨¯¥°¡®«»,¯®±«¥ ®²° ¦¥¨¿ \¨±µ®¤¿²"¨§ ¤°³£®£®, ². ¥.
¯°®¤®«¦¥¨¥ ®²° ¦¥®£® «³· § ²®·ª³ ®²° ¦¥¨¿ ¯®¯ ¤ ¥² ¢ ¤°³£®© ´®ª³±.³·¨, ¢»µ®¤¿¹¨¥ ¨§ ´®ª³± ¯ ° ¡®«»,¯®±«¥ ®²° ¦¥¨¿ ±² ®¢¿²±¿ ¯ ° «-«¥«¼»¬¨ ¤°³£ ¤°³£³.®ª § ²¥«¼±²¢®. ««¨¯±. ³±²¼ «³· ¢»¸¥« ¨§ ´®ª³± A ¨, ®²° §¨¢¸¨±¼ ®² ²®·ª¨X ½««¨¯± , ¥ ¯®¯ « ¢ ¤°³£®© ´®ª³± B . ·¨², ¥±«¨ l | ª ± ²¥«¼ ¿ ¢ ²®·ª¥ X ,²® ³£®« ¯ ¤¥¨¿ l ¥ ° ¢¥ ³£«³ ®²° ¦¥¨¿ ¯® § ¬¥· ¨¾ 9.9. ·¨², ¯® § ¬¥· ¨¾ 9.7, jAX j + jBX j ¥ ¬¨¨¬ «¼® ¯°¨ ¯°®¡¥£ ¨¨ X ¯® l. ® ½²® ¯°®²¨¢®°¥·¨²£¥®¬¥²°¨·¥±ª®¬³ ®¯°¥¤¥«¥¨¾ ½««¨¯± , ² ª ª ª ®±² «¼»¥ ²®·ª¨ ª ± ²¥«¼®© «¥¦ ²¢¥ ¥£® (¯® § ¬¥· ¨¾ 9.8).39¨¯¥°¡®« .
«®£¨·® ½««¨¯±³. ° ¡®« . ±±¬®²°¨¬ ¯ ° ¡®«³ ± ´®ª³±®¬ F ¨ ¤¨°¥ª²°¨±®© d. ³±²¼ l |±¥°¥¤¨»© ¯¥°¯¥¤¨ª³«¿° ª Y F . ® ®¯°¥¤¥«¥¨¾ ¯ ° ¡®«», ²°¥³£®«¼¨ª ° ¢®¡¥¤°¥»© ¨ l ¯°®µ®¤¨² ·¥°¥§ X . ®ª ¦¥¬, ·²® l ¿¢«¿¥²±¿ ª ± ²¥«¼®© ª ¯ ° ¡®«¥ ¢²®·ª¥ X . °¥¤¯®«®¦¨¬ ¯°®²¨¢®¥, ²®£¤ (¯® § ¬¥· ¨¾ 9.8) ¨¬¥¥²±¿ ¥¹¥ ®¤ ²®·ª ¯¥°¥±¥·¥¨¿ l ± ¯ ° ¡®«®© | X 0 6= X , Y 0 | ¥¥ ¯°®¥ª¶¨¿ ¤¨°¥ª²°¨±³ d. ®£¤ (¯® ±¢®©±²¢³ ±¥°¥¤¨®£® ¯¥°¯¥¤¨ª³«¿° ) jY X 0j = jX 0F , ² ª ª ª X 0 | ²®·ª ¯ ° ¡®«», ²® jY 0X 0j = jX 0F j.
·¨², jX 0Y 0j = jX 0Y j, ® ¤«¨ ª«®®© ¤®«¦ ¡»²¼ ¡®«¼¸¥ ¤«¨» ¯¥°¯¥¤¨ª³«¿° . ª¨¬ ®¡° §®¬, l ¿¢«¿¥²±¿ ª ± ²¥«¼®©.°¨ ½²®¬ ³£«» ¬¥¦¤³ Y X ¨ l ¨ ¬¥¦¤³ FX ¨ l ° ¢», ² ª ·²® ®²° ¦¥»© «³·«¥¦¨² ¯°®¤®«¦¥¨¨ Y X ?d.2«¥¤±²¢¨¥ 9.11.««¨¯± ¨ ¯ ° ¡®« ± ®¡¹¨¬¨ ´®ª³± ¬¨ ¯¥°¥±¥ª ¾²±¿ ¯®¤ ¯°¿¬»¬³£«®¬.®ª § ²¥«¼±²¢®. ³±²¼ le ¨ lh | ª ± ²¥«¼»¥ ¢ ²®·ª¥ ¯¥°¥±¥·¥¨¿ ª ½««¨¯±³ ¨£¨¯¥°¡®«¥, ±®®²¢¥²±²¢¥®. ® ¤®ª § ®© ²¥®°¥¬¥, ³£«» ¡³¤³² ² ª¨¬¨, ª ª ®¡®§ ·¥® °¨±³ª¥:CCClhCCCCCC ePPiPPCPPPP CPPCP7 C PPP PPCPPCPPqPCCC1ClF«¥¤®¢ ²¥«¼®, 2 + 2 = ¨ + = =2.F229.4. «¨²¨·¥±ª¨¥ ®¯°¥¤¥«¥¨¿ ª®¨ª¯°¥¤¥«¥¨¥ 9.12.
( «¨²¨·¥±®¥ ®¯°¥¤¥«¥¨¥ )««¨¯±®¬ §»¢ ¥²±¿ª°¨¢ ¿ ¢²®°®£® ¯®°¿¤ª , § ¤ ¢ ¥¬ ¿ ¢ ¥ª®²®°®© ¯°¿¬®³£®«¼®© ±¨±²¥¬¥ ª®®°¤¨ ²³° ¢¥¨¥¬x + y = 1; (a b);(2)a b222240£¨¯¥°¡®«®©|xay = 1;b222¯ ° ¡®«®©|(3)2y = 2px;(p > 0):2(4)¥®°¥¬ 9.13.®ª § ²¥«¼±²¢®. ««¨¯±. ¢¥¤¥¬ ¯°¿¬®³£®«¼³¾ ±¨±²¥¬³ ª®®°¤¨ ², ª ª ¯®ª «¨²¨·¥±ª¨¥ ¨ £¥®¬¥²°¨·¥±ª¨¥ ®¯°¥¤¥«¥¨¿ ½ª¢¨¢ «¥²».§ ® °¨±³ª¥y6X (x; y) HHHHHHHHrrOF ( c; 0)x-F (c; 0)12®£¤ £¥®¬¥²°¨·¥±ª®¥ ®¯°¥¤¥«¥¨¥ fX j jXF j + jXF j = 2ag ¯¥°¥¯¨¸¥²±¿ ¢ ¢¨¤¥qqr + r = 2a; r = (x + c) + y ; r = (x c) + y ;qq(x + c) + y = 2a (x c) + y ;q(x + c) + y = 4a + (x c) + y 4a (x c) + y ;qa cx = a (x c) + y ;a 2a cx + c x = a x + a c 2a cx + a y ;a a c = (a c )x + a y ;x + y = 1; b := a c :(5)a b¥¯®±°¥¤±²¢¥® ¨§ ³° ¢¥¨¿ ¢¨¤®, ·²® ½««¨¯± § ª«¾·¥ ¢ ¯°¿¬®³£®«¼¨ª, ¯°¨·¥¬ £° ¨¶¥ ¥£® «¥¦ ² «¨¸¼ ²®·ª¨ ¯¥°¥±¥·¥¨¿ ± ®±¿¬¨:112212222222222222242 22222222224122 2222 22 22222242222y6bxOra F ( c; 0)raF (c; 0)1-2b²®² ¯°¿¬®³£®«¼¨ª ±® ±²®°® ¬¨ 2a ¨ 2b §»¢ ¥²±¿ ®±®¢»¬ ¯°¿¬®³£®«¼¨ª®¬½««¨¯± .¡° ²®, ¯³±²¼ ²®·ª (x; y) ³¤®¢«¥²¢®°¿¥² ³° ¢¥¨¾ (5), ².