Е.В. Троицкий - Аналитическая геометрия (лекции) (1113350), страница 10
Текст из файла (страница 10)
¥.1¼¥§ ®±² ²ª .58¬®£®·«¥FF =0¤¥«¨²±¿ ®ª § ²¥«¼±²¢®. ³±²¼ A 6= 0 (¤«¿ B 6= 0 «®£¨·®). §¤¥«¨¬ ¬®£®·«¥ F f ª ª ¬®£®·«¥» ®² x ± ®±² ²ª®¬ r(y). °¥¤¯®«®¦¨¬, ·²® r 6= 0, ². ¥. ©¤¥²±¿² ª ¿ ²®·ª y , ·²® r(y ) 6= 0. »¡¥°¥¬ x ² ª, ·²®¡»f (x ; y ) = Ax + By + C = 0; ²:¥: x = A1 (By + C ):®£¤ (x ; y ) 2 ff = 0g fF = 0g ¨000000000000 = F (x ; y ) = f (x ; y ) F (x ; y ) + r(y ) = 0 F (x ; y ) + r(y ) = r(y ):00001000100002°®²¨¢®°¥·¨¥.«¥¤±²¢¨¥ 10.29.F (x; y) = 0 ±®¤¥°¦¨² ¯°¿¬³¾Ax + By + C = 0, ²® F = (Ax + By + C ) (A x + B y + C ). ²® ¢®§¬®¦®±¤¥« ²¼ ²®£¤ ¨ ²®«¼ª® ²®£¤ , ª®£¤ = 0. ±«¨ ª°¨¢ ¿ ¢²®°®£® ¯®°¿¤ª 111®ª § ²¥«¼±²¢®.
¥°¢®¥ ³²¢¥°¦¤¥¨¥ ¯®«³· ¥²±¿ ±° §³ ¨§ ¯°¥¤»¤³¹¥£® ¯°¥¤«®¦¥¨¿, ¢²®°®¥ | ¨§ ¯¥°¢®£® ¨ ²¥®°¥¬» ®¡ ®¯°¥¤¥«¥¨¨ ¢¨¤ ª°¨¢®© ¯® ¨¢ °¨ ² ¬.2°¨¬¥° 10.30.F (x; y) = x5xy + 4y + x + 2y 2 = x (5y 1)x + (4y + 2y 2);x ; = 5y 1 2(3y 3) ; x = 4y 2; x = y + 1;F (x; y) = (x x ) (x x ) = (x 4y + 2) (x y 1): ¤ · 6. ®ª § ²¼, ·²® ¥±«¨ a 6= 0, ²® ª¢ ¤° ²®¥ ³° ¢¥¨¥ F (x; y) = 0 ®²®±¨²¥«¼® x ¨¬¥¥² ±®¨¬ ¤¨±ª°¨¬¨ ²®¬ ª¢ ¤° ²»© ²°¥µ·«¥ ®²®±¨²¥«¼® y,¤¨±ª°¨¬¨ ² ª®²®°®£® ¢ ±¢®¾ ®·¥°¥¤¼ ° ¢¥ a 1. · ±²®±²¨, ª®°¥¼ ¨§¢«¥ª ¥²±¿ ²®·® ¯°¨ = 0.2222112122111¥®°¥¬ 10.31. °®¨§¢®«¼»© ®°²®£® «¼»© ¨¢ °¨ ²J¬®£®·«¥ ¢²®°®©±²¥¯¥¨, ¯®«¨®¬¨ «¼® § ¢¨±¿¹¨© ®² ¥£® ª®½´´¨¶¨¥²®¢, ¿¢«¿¥²±¿ ¬®£®·«¥®¬®²S , ¨ .10.5.
¥®°¥¬» ¥¤¨±²¢¥®±²¨ ¤«¿ ª°¨¢»µ ¢²®°®£® ¯®°¿¤ª ¯®¬¨¬, ·²® ª¢ ¤°¨ª | ½²® «£¥¡° ¨·¥±ª®¥ ³° ¢¥¨¥ ¢²®°®£® ¯®°¿¤ª ±²®·®±²¼¾ ¤® ³¬®¦¥¨¿ ¥³«¥¢®© ¬®¦¨²¥«¼.¥®°¥¬ 10.32.³¹¥±²³¥² ¨ ¥¤¨±²¢¥ ª¢ ¤°¨ª , ¯°®µ®¤¿¹ ¿ ·¥°¥§ ¤ »¥ ° §-«¨·»¥ ¯¿²¼ ²®·¥ª, ¨ª ª¨¥ ·¥²»°¥ ¨§ ª®²®°»µ ¥ «¥¦ ² ®¤®© ¯°¿¬®©.59®ª § ²¥«¼±²¢®.
³±²¼ Pi(xi; yi), i = 1; : : : ; 5, | ½²¨ ²®·ª¨ ¢ ¥ª®²®°®© ¯°¿¬®-³£®«¼®© ±¨±²¥¬¥ ª®®°¤¨ ². «¿ µ®¦¤¥¨¿ ª®½´´¨¶¨¥²®¢ ³° ¢¥¨¿ ¨±ª®¬®©ª¢ ¤°¨ª¨ ¢®§¨ª ¥² ±¨±²¥¬ ¨§ 5 «¨¥©»µ ³° ¢¥¨©:a xi + 2a xiyi + a yi + 2a xi + 2a yi + a = 0;1121222212i = 1; : : : 2;0®² 6 ¥¨§¢¥±²»µ ± ²®·®±²¼¾ ¤® ³¬®¦¥¨¿ ¥³«¥¢®© ¬®¦¨²¥«¼. ª ¿ ±¨±²¥¬ ¢±¥£¤ ¨¬¥¥² °¥¸¥¨¥. ® ®¤®§ ·® ± ²®·®±²¼¾ ¤® ³¬®¦¥¨¿ ¥³«¥¢®© ¬®¦¨²¥«¼, ¥±«¨ ³° ¢¥¨¿ «¨¥©® ¥§ ¢¨±¨¬». ®¯³±²¨¬ ¯°®²¨¢®¥. ³±²¼, ¯°¨¬¥°, ¯¿²®¥ ³° ¢¥¨¥ ¿¢«¿¥²±¿ «¨¥©®© ª®¬¡¨ ©¨¥© ¯¥°¢»µ ·¥²»°¥µ, ² ª·²® «¾¡ ¿ ª¢ ¤°¨ª , ¯°®µ®¤¿¹ ¿ ·¥°¥§ P ; : : :; P , ¯°®µ®¤¨² ¨ ·¥°¥§ P . ±±¬®²°¨¬¤¢ ±«³· ¿.1: ²°¨ ²®·ª¨ ¨§ P ; : : :; P , ¯°¨¬¥°, P ; P ; P «¥¦ ² ®¤®© ¯°¿¬®©, ª®²®°³¾®¡®§ ·¨¬ l.11441253mPr5 4r3r2r1PrlPPP°®¢¥¤¥¬ ¯°¿¬³¾ m, ±®¤¥°¦ ¹³¾ P ¨ ¥ ±®¤¥°¦ ¹³¾ P .
ª ª ª 4 ²®·ª¨ ¥ «¥¦ ² ®¤®© ¯°¿¬®©, ²® m 6= l ¨ m [ l | ª¢ ¤°¨ª , ¥ ±®¤¥°¦ ¹ ¿ P . °®²¨¢®°¥·¨¥.2: ¨ª ª¨¥ ²°¨ ²®·ª¨ ¨§ P ; : : :; P ¥ «¥¦ ² ®¤®© ¯°¿¬®©. ®£¤ ®¯°¥¤¥«¥»¤¢¥ ª¢ ¤°¨ª¨: q := (P P ) [ (P P ) ¨ q := (P P ) [ (P P ).PPPP##PP# PPPP P #PP# PPP#Phhhh#PP# hhhhhh4551112434214232r3r1r###4hhhr hhhh#Pr5® ¯°¥¤¯®«®¦¥¨¾, P 2 q , P 2 q . ® q \ q = fP ; P ; P ; P g.
°®²¨¢®°¥·¨¥.2515216021234¥®°¥¬ 10.33. ±«¨ ¤¢ ³° ¢¥¨¿ ¢²®°®© ±²¥¯¥¨F = 0 ¨ G = 0 § ¤ ¾² ®¤³¨ ²³ ¦¥ ª°¨¢³¾, ². ¥. ®¤® ¨ ²® ¦¥ ¬®¦¥±²¢® ²®·¥ª, ¯°¨·¥¬ ±®¤¥°¦ ¹³¾ ¡®«¥¥F = G, 6= 0.®ª § ²¥«¼±²¢®. , ¯®¤¯ ¤ ¾¹¨¥ ¯®¤ ´®°¬³«¨°®¢ª³ ²¥®°¥¬», §®¢¥¬ ±®¤¥°¦ ²¥«¼»¬¨ ( ¨ ¯ °» ¯°¿¬»µ, ¡»²¼ ¬®¦¥² ±®¢¯ ¤ ¾¹¨µ), ¯°®·¨¥ | ¥±®¤¥°¦ ²¥«¼»¬¨ (²®·ª ¨ ¯³±²®¥ ¬®¦¥±²¢®). «¿ ¢±¥µ ±®¤¥°¦ ²¥«¼»µ ª°¨¢»µ,ª°®¬¥ ±®¢¯ ¤ ¾¹¨µ ¯°¿¬»µ, ±³¹¥±²¢³¾² ¯°¨ ¤«¥¦ ¹¨¥ ¨¬ 4 ²®·ª¨, ¥ «¥¦ ¹¨¥ ®¤®© ¯°¿¬®©. ®½²®¬³ ³²¢¥°¦¤¥¨¥ ²¥®°¥¬» ¤«¿ ¨µ ±«¥¤³¥² ¨§ ¯°¥¤»¤³¹¥© ²¥®°¥¬». ±² «±¿ ±«³· © ¤¢³µ ±®¢¯ ¤ ¾¹¨µ ¯°¿¬»µ. ³±²¼ F = 0 ¨ G = 0 ±®¤¥°¦ ²Ax + Bx + C = 0.
®£¤ ¯® ¯°¥¤«®¦¥¨¾ ® ° ±¯ ¤ ¾¹¨µ±¿ ª°¨¢»µ,F = (Ax + By + C ) (A x + B y + C ); G = (Ax + By + C ) (A x + B y + C ):®£¤ °¥·¼ ¨¤¥² ® ±®¢¯ ¢¸¨µ ¯°¿¬»µ, ²® ¢²®°»¥ ±®¬®¦¨²¥«¨ ¤®«¦» ®¯°¥¤¥«¿²¼²³ ¦¥ ¯°¿¬³¾ Ax + Bx + C = 0, § ·¨², ¯® ²¥®°¥¬¥ ®¡ ³° ¢¥¨¿µ ¯¥°¢®£® ¯®°¿¤ª ,§ ¤ ¾¹¨µ ®¤³ ¨ ²³ ¦¥ ª°¨¢³¾,A x + B y + C = (Ax + Bx + C ); A x + B y + C = (Ax + Bx + C );² ª ·²® G = F .2®¤®© ²®·ª¨, ²®11111212222210.6. ¥®°¥¬ ±ª «¿. \®±²°®¥¨¥" ª°¨¢®© ¢²®°®£® ¯®°¿¤ª ¯® ¯¿²¨ § ¤ »¬ ²®·ª ¬.¯°¥¤¥«¥¨¥ 10.34. ¥±²¨¢¥°¸¨¨ª®¬ §»¢ ¥²±¿ ³¯®°¿¤®·¥»© ¡®°A ; : : : ; A ¸¥±²¨ ²®·¥ª ¯«®±ª®±²¨, µ®¤¿¹¨µ±¿ ¢ ®¡¹¥¬ ¯®«®¦¥¨¨, ².
¥. ¨ª ª¨¥ 3 ²®·ª¨ ¥ «¥¦ ² ®¤®© ¯°¿¬®©. £® ±²®°®» : A A , A A , ... A A .°®²¨¢®¯®«®¦»¥ ±²®°®» : A A ¨ A A , A A ¨ A A , A A ¨ A A .XXXTAXXX TAAA TAA ZZZ ADATSSC@ZDT ACS@DT C @SADAA TTC @ SDAC DSA@ A AAACCS A @ AA@SA16112452356322463611412265623644513351 ¬¥· ¨¥ 10.35. ¨ª ª¨¥ 3 ²®·ª¨ ¥ «¥¦ ² ®¤®© ¯°¿¬®©. ²® ±«¥¤³¥²¨§ ° ±±¬®²°¥¨¿ ¬®¦¥±²¢ ²®·¥ª ¯¥°¥±¥·¥¨¿ ¯°¿¬®©, § ¤ ®© ¯ ° ¬¥²°¨·¥±ª¨, ±ª°¨¢®©. °¥§³«¼² ²¥ ¯®«³· ¥¬ ³° ¢¥¨¥ ¥ ±² °¸¥ ¢²®°®£® ¯®°¿¤ª ¯ ° ¬¥²°. ·¨², ¥±«¨ ª°¨¢ ¿ ¯¥°¥±¥ª ¥²±¿ ± ¯°¿¬®© ¡®«¼¸¥, ·¥¬ ¯® 2 ²®·ª ¬, ²® ® ¯°¿¬³¾±®¤¥°¦¨².
®¤°®¡»¥ ¢»ª« ¤ª¨ ¡³¤³² ¯°®¢¥¤¥» ¢ ±«¥¤³¾¹¨µ ¯ ° £° ´ µ. ª¨¬®¡° §®¬, ³¯®°¿¤®·¥»© ¡®° 6 ° §«¨·»µ ²®·¥ª § ¤ ¥² ¸¥±²¨¢¥°¸¨¨ª.61¥®°¥¬ 10.36 ( ±ª «¿).®·ª¨ ¯¥°¥±¥·¥¨¿ ¯°®²¨¢®¯®«®¦»µ ±²®°® ¸¥±²¨-¢¥°¸¨¨ª , ¢¯¨± ®£® ¢ , «¥¦ ² ®¤®© ¯°¿¬®©.®ª § ²¥«¼±²¢®. ³±²¼ P = (A A ) \ (A A ), P = (A A ) \ (A A ), P = (A A ) \(A A ). ®ª ¦¥¬, ·²® P 2 (P P ).161131245223563342 ±±¬®²°¨¬ ³° ¢¥¨¿ ª°¨¢»µ ²°¥²¼¥© ±²¥¯¥¨P (x; y) = a x +a x y+a y +a y +a x +a xy+a y +a x+a y+a = 0;¯°®µ®¤¿¹¨µ ·¥°¥§ 8 ²®·¥ª: A ; : : :; A ; P ; P . ®§¨ª ¥² ®¤®°®¤ ¿ ±¨±²¥¬ ¨§ 8³° ¢¥¨© 10 ª®½´´¨¶¨¥²®¢ aijk . ®ª ¦¥¬, ·²® ½²¨ 8 ³° ¢¥¨© «¨¥©® ¥§ ¢¨±¨¬».
°¥¤¯®«®¦¨¬, ·²® ½²® ¥ ² ª, ². ¥. ®¤® ¨§ ³° ¢¥¨© «¨¥©® ¢»° ¦ ¥²±¿·¥°¥§ ®±² «¼»¥. ²® ®§ · ¥², ·²® «¾¡ ¿ ª³¡¨·¥±ª ¿ ª°¨¢ ¿, ¯°®µ®¤¿¹ ¿ ·¥°¥§ 7²®·¥ª, ¯°®µ®¤¨² ¨ ·¥°¥§ ¢®±¼¬³¾.®¯³±²¨¬, ³° ¢¥¨¥, ®²¢¥· ¾¹¥¥ P , ¢»° ¦ ¥²±¿ ·¥°¥§ ®±² «¼»¥. ±±¬®²°¨¬ª³¡¨·¥±ª®¥ ³° ¢¥¨¥, ° ¢®¥ ¯°®¨§¢¥¤¥¨¾ ³° ¢¥¨¿ ¸¥© ª¢ ¤°¨ª¨ ³° ¢¥¨¥ ¯°¿¬®©, ¯°®µ®¤¿¹¥© ·¥°¥§ P , ® ¥ ·¥°¥§ P .
°®²¨¢®°¥·¨¥. «®£¨·® ¤«¿ P .³±²¼ ²¥¯¥°¼ \§ ¢¨±¨¬ ¿" ²®·ª | A . ®£¤ ¯°®²¨¢®°¥·¨¥ ¯®«³· ¥²±¿ ¨§ ª³¡¨ª¨ (A A ) [ (A A ) [ (A A ). «®£¨·® ¤«¿ ®±² «¼»µ Ai.² ª 8 ³° ¢¥¨© «¨¥©® ¥§ ¢¨±¨¬» ¨ «¾¡®¥ °¥¸¥¨¥ ¿¢«¿¥²±¿ «¨¥©®© ª®¬¡¨ ¶¨¥© ¤¢³µ «¨¥©® ¥§ ¢¨±¨¬»µ °¥¸¥¨©. ¢ °¥¸¥¨¿, ®¯°¥¤¥«¿¾¹¨¥ ° §«¨·»¥ ¡³¤³² «¨¥©® ¥§ ¢¨±¨¬» (®² ¯°®²¨¢®£®). · ±²®±²¨, ª³¡¨·¥±ª¨¥³° ¢¥¨¿ (A A ) [ (A A ) [ (A A ) ¨ (A A ) [ (A A ) [ (A A ) «¨¥©® ¥§ ¢¨±¨¬». ·¨², ³° ¢¥¨¥ Q [ (P P ), £¤¥ Q | ¨±µ®¤ ¿ ª®¨ª , ¢»° ¦ ¥²±¿ ¢ ¢¨¤¥¨µ «¨¥©®© ª®¬¡¨ ¶¨¨. ·¨², P 2 (A A ) [ (A A ) [ (A A ) \ (A A ) [ (A A ) [ (A A ) Q [ (P P ):11131122122222213201161012022200100200022121145231526345131234562345612623456112 ±¨«³ § ¬¥· ¨¿ 10.35 P ¥ ¬®¦¥² «¥¦ ²¼ Q.
·¨², P 2 (P P ).2¥®°¥¬ ±ª «¿ ¯®§¢®«¿¥² ¯°®¢®¤¨²¼ ±«¥¤³¾¹¨¥ ¯®±²°®¥¨¿ ²®«¼ª® ± ¯®¬®¹¼¾«¨¥©ª¨.®±²°®¥¨¥ 1. ®¯³±²¨¬, ¬ ¨§¢¥±²» 5 ²®·¥ª A ; : : :; A , «¥¦ ¹¨¥ ª¢ ¤°¨ª¥ (¤«¿ ¯°®±²®²» ¡³¤¥¬ ±·¨² ²¼ ¨µ ¯®±«¥¤®¢ ²¥«¼® «¥¦ ¹¨¬¨). ±±¬®²°¨¬²®·ª³ P = (A A ) \ (A A ) ¨ ¯°¿¬»¥ l = (A A ) ¨ l = (A A ). ®£¤ ¯® ª ¦¤®© ²®·ª¥ P ¯°¿¬®© l ¬» ¬®¦¥¬ ¯®±²°®¨²¼ ²®·ª³ A ª®¨ª¥ ¯® ±«¥¤³¾¹¥¬³ ¯° ¢¨«³.
°®¢¥¤¥¬ ¯°¿¬³¾ (P P ) ¤® ¯¥°¥±¥·¥¨¿ ± l ¢ ²®·ª¥ P . ®£¤ A = (P A ) \ (P A ).®±²°®¥¨¥ 2. ®±ª®«¼ª³ ª ± ²¥«¼ ¿ ¿¢«¿¥²±¿ ¯°¥¤¥«¼»¬ ¯®«®¦¥¨¥¬ ±¥ª³¹¥©, ²®, ³±²°¥¬«¿¿ A ! A , ¬» ¯°¨µ®¤¨¬ ª ±«¥¤³¾¹¥¬³. ®¯³±²¨¬, ¬ ¨§¢¥±²»5 ²®·¥ª A ; : : :; A , «¥¦ ¹¨¥ ª¢ ¤°¨ª¥ (¤«¿ ¯°®±²®²» ¡³¤¥¬ ±·¨² ²¼ ¨µ ¯®±«¥¤®¢ ²¥«¼® «¥¦ ¹¨¬¨). » µ®²¨¬ ¯®±²°®¨²¼ ª ± ²¥«¼³¾ ¢ ²®·ª¥ A . ®±²°®¨¬ ²®·ª¨P = (A A ) \ (A A ), P = (A A ) \ (A A ). ³±²¼ P = (P P ) \ (A A ).
®£¤ (P A ) | ¨±ª®¬ ¿ ª ± ²¥«¼ ¿.33111124522253533461331613226225551122453345562121323¥®°¥¬ 10.37 ( ¯¯ ). ¥®°¥¬ ±ª «¿ ¢¥° ¨ ¢ ±«³· ¥ ¤¢³µ ¥±®¢¯ ¤ ¾¹¨µ¯°¿¬»µ, ¥±«¨ ¯®²°¥¡®¢ ²¼, ·²®¡» ¢¥°¸¨» ¢¯¨± ®£® ¸¥±²¨¢¥°¸¨¨ª «¥¦ «¨·¥°¥§ ®¤³ ª ¦¤®© ¨§ ¯°¿¬»µ, ². ¥.A ;A ;A14 | ®¤®©, ®±² «¼»¥ | 3¤°³£®©.¨¬ ²¥«¼® ¯°® «¨§¨°®¢ ¢ ¤®ª § ²¥«¼±²¢® ²¥®°¥¬» ±ª «¿, ¬®¦® ³¡¥¤¨²¼±¿, ·²® ¢¥° ² ª¦¥¥®°¥¬ 10.38 (®¡° ² ¿ ²¥®°¥¬ ±ª «¿). ±«¨ ²®·ª¨ ¯¥°¥±¥·¥¨¿ ¯°®-²¨¢®¯®«®¦»µ ±²®°® ¸¥±²¨¢¥°¸¨¨ª «¥¦ ² ®¤®© ¯°¿¬®©, ²® ¢®ª°³£ ¥£®¬®¦® ®¯¨± ²¼ ª®¨ª³. ¤ · 7.
°®¢¥±²¨ ¯®¤°®¡®¥ ¤®ª § ²¥«¼±²¢® ²¥®°¥¬» ¯¯ . ¤ · 8. °®¢¥±²¨ ¯®¤°®¡®¥ ¤®ª § ²¥«¼±²¢® ®¡° ²®© ²¥®°¥¬» ±ª «¿.11. ¥°¥±¥·¥¨¥ ª°¨¢®© ¢²®°®£® ¯®°¿¤ª ± ¯°¿¬®© ±±¬®²°¨¬ ª°¨¢³¾ ¢²®°®£® ¯®°¿¤ª , § ¤ ³¾ ¢ ¥ª®²®°®© ´´¨®© ±¨±²¥¬¥ª®®°¤¨ ² ³° ¢¥¨¥¬F (x; y) = a x + 2a xy + a y + 2a x + 2a y + a = 0;¨ ¯°¿¬³¾ l, § ¤ ³¾ ¯ ° ¬¥²°¨·¥±ª¨(x = x + t :y = y + t«¿ µ®¦¤¥¨¿ ²®·¥ª ¯¥°¥±¥·¥¨¿ ¨ l ¯®¤±² ¢¨¬ ¯ ° ¬¥²°¨·¥±ª¨¥ ³° ¢¥¨¿ ¢F = 0:a (x + t) +2a (x + t)(y + t)+ a (y + t) +2a (x + t)+2a (y + t)+ a = 0;¨«¨F t + 2F t + F = 0;£¤¥F = a + 2a + a = q(; );F = (a x + a y + a ) + (a x + a y + a );F = F (x ; y ):¯°¥¤¥«¥¨¥ 11.1.