Механизмы реакций комплексов меди с алкильными радикалами (1105606), страница 18
Текст из файла (страница 18)
С. 440-444.56. Li G., Camaioni D. M., Amonette J. E., Zhang Z. C., Johnson T. J., Fulton J. L.[CuCln]2−n Ion-Pair Species in 1-Ethyl-3-methylimidazolium Chloride Ionic Liquid−WaterMixtures: Ultraviolet−Visible, X-ray Absorption Fine Structure, and Density FunctionalTheory Characterization. // J.
Phys. Chem. B - 2010. - V. 114. - N. 39. - P. 12614-12622.57. Sasaki T., Tada M., Zhong C., Kume T., Iwasawa Y. Immobilized metal ion-containingionic liquids: Preparation, structure and catalytic performances in Kharasch additionreaction and Suzuki cross-coupling reactions. // J. Mol. Cat. A - 2008. - V. 279. - N. 2. P. 200-209.58. Харитонов Д.Н., Голубева Е.Н. Димеризация хлоркупратов в слабополярныхрастворителях // Кинетика и катализ - 2003. - Т.44. - №4. - С.563-567.59. Szilagyi R. K., Metz M., Solomon E.
I. Spectroscopic Calibration of Modern DensityFunctional Methods Using [CuCl4]2-. // J. Phys. Chem. A - 2002. - V. 106. - N. 12. - P.2994-3007.60. Yi H.-B., Xia F.-F., Zhou Q., Zeng D. [CuCl3]− and [CuCl4]2− Hydrates in ConcentratedAqueous Solution: A Density Functional Theory and ab Initio Study. // J. Phys. Chem.
A 2011. - V. 115. - N. 17. - P. 4416-4426.61. Oueslati A., Bulou A., Calvayrac F., Adil K., Gargouri M., Hlel F. Infrared, polarizedRaman and ab initio calculations of the vibrational spectra of [N(C3H7)4]2Cu2Cl6 crystals. //Vib. Spectroscop. - 2013. V. 64. - P. 10-20.62. Castell O., Miralles J., Caballol R.
Structural dependence of the singlet-triplet gap indoubly bridged copper dimers: a variational CI calculation. // Chem. Phys. - 1994. - V. 179.- N. 3. - P. 377-384.10963. Valero R., Costa R., de P. R. Moreira I., Truhlar D. G., Illas F. Performance of the M06family of exchange-correlation functionals for predicting magnetic coupling in organic andinorganic molecules. // J.
Chem. Phys. - 2008. - V. 128. - N. 11. - P. 114103-114110.64. Rodriguez M., Llobet A., Corbella M. A theoretical analysis of how geometricaldistortions on Cu(μ-Cl)2Cu dimers influence their electronic and magnetic properties. //Polyhedron - 2000. - V.
19. - N. 24-25. - P. 2483-2491.65. Rocquefelte X., Schwarz K., Blaha P. Theoretical Investigation of the MagneticExchange Interactions in Copper(II) Oxides under Chemical and Physical Pressures. // Sci.Rep. - 2012. - V. 2. - P. 759.66. Noodleman L. Valence bond description of antiferromagnetic coupling in transitionmetal dimers. // J.
Chem. Phys. - 1981. - V. 74. - N. 10. - P. 5737-5743.67. Ruiz E., Cano J., Alvarez S., Alemany P. Broken symmetry approach to calculation ofexchange coupling constants for homobinuclear and heterobinuclear transition metalcomplexes. // J. Comp. Chem. - 1999. - V. 20. - N. 13.
- P. 1391-1400.68. Saito T., Yasuda N., Nishihara S., Yamanaka S., Kitagawa Y., Kawakami T., OkumuraM., Yamaguchi K. Broken-symmetry natural orbital (BSNO)-Mk-MRCC study on theexchange coupling in the binuclear copper(II) compounds. // Chem. Phys. Lett. - 2011. - V.505. - N. 1-3. - P. 11-15.69. Caballol R., Castell O., Illas F., de P.
R. Moreira I., Malrieu J. P. Remarks on the ProperUse of the Broken Symmetry Approach to Magnetic Coupling. // J. Phys. Chem. A. - 1997.- V. 101. - N. 42. - P. 7860-7866.70. Chow C., Caputo R., Willett R. D., Gerstein B. C. Magnetic susceptibility study ofυ4AsCuCl3: An example of a Cu2Cl62− dimer with a ground state triplet. // J. Chem. Phys. 1974. - V. 61. - N. 1. - P. 271-273.71. Ferguson J. Electronic Absorption Spectrum and Structure of CuCl42-. // J. Chem.
Phys.- 1964. - V. 40. - N. 11. - P. 3406-3410.72. Willett R. D., Haugen J. A., Lebsack J., Morrey J. Thermochromism in copper(II)chlorides. Coordination geometry changes in tetrachlorocuprate(2-)anions. // Inorg. Chem. 1974. - V. 13. - N. 10. - P. 2510-2513.73. Голубева Е.Н., Пергушов В.В., Кокорин А.И., Кочубей Д.И., Кривенцов В.В.,Зубарева Н.А. Влияние нуклеарности хлоридных комплексов меди (II) на их110активность в каталитической реакции метатезиса связи C-Cl // Кинетика и катализ 2008.
- Т. 49. - № 5 - С. 773-778.74. Ehara M., Piecuch P., Lutz J. J., Gour J. R. Symmetry-adapted-cluster configurationinteraction and equation-of-motion coupled-cluster studies of electronically excited states ofcopper tetrachloride and copper tetrabromide dianions. // Chem. Phys. - 2012. - V. 399.
P. 94-110.75. Robinson D., Besley N. A. Modelling the spectroscopy and dynamics of plastocyanin. //Physical Chemistry Chemical Physics. - 2010. - V. 12. - N. 33. - P. 9667-9676.76. Sharnoff M., Reimann C. W. Intrinsic and Lattice‐Induced Distortion of theTetrachlorocuprate Ion.
// J. Chem. Phys. - 1965. - V. 43. - N. 9. - P. 2993-2996.77. Willett R. D., Liles O. L., Michelson C. Electronic absorption spectra of monomericcopper(II) chloride species and the electron spin resonance spectrum of the square-planarCuCl42- ion. // Inorg. Chem. - 1967. - V. 6. - N. 10. - P. 1885-1889.78. Furlani C., Cervone E., Calzona F., Baldanza B. Crystal spectrum of bistrimethylbenzylammoniumtetrachlorocuprate (II). // Theoret. Chim.
Acta. - 1967. - V. 7. N. 5. - P. 375-382.79. Desjardins S. R., Penfield K. W., Cohen S. L., Musselman R. L., Solomon E. I. Detailedabsorption, reflectance, and UV photoelectron spectroscopic and theoretical studies of thecharge-transfer transitions of tetrachlorocuprate(2-) ion: correlation of the square-planar andthe tetrahedral limits. // J. Am. Chem.
Soc. - 1983. - V. 105. - N. 14. - P. 4590-4603.80. Sharnoff M., Reimann C. W. Charge‐Transfer Spectrum of the Tetrachlorocuprate Ion.// J. Chem. Phys. - 1967. - V. 46. - N. 7. - P. 2634-2640.81. Bird B. D., Day P. Analysis of the Charge‐Transfer Spectra of SomeFirst‐Transition‐Series Tetrahalide Complexes. // J. Chem. Phys.
- 1968. - V. 49. - N. 1. - P.392-403.82. Deeth R. J. Discrete variational Xα calculations of the spectra of chlorocuprate(II)complexes: a detailed comparison with experiment and the cellular ligand field model. //J. Chem. Soc., Dalton Trans. - 1990. - V. - N. 1. - P. 355-363.83. Sousa C., de Jong W. A., Broer R., Nieuwpoort W. C. Theoretical characterization ofthe low-lying excited states of the CuCl molecule. // J. Chem.
Phys. - 1997. - V. 106. - N.17. - P. 7162-7169.11184. Sauri V., Serrano-Andr s L., Shahi A. R. M., Gagliardi L., Vancoillie S., Pierloot K.Multiconfigurational Second-Order Perturbation Theory Restricted Active Space (RASPT2)Method for Electronic Excited States: A Benchmark Study. // J. Chem. Theory Comput. 2010. - V. 7. - N. 1. - P. 153-168.85.
Sharnoff M. Electron Paramagnetic Resonance and the Primarily 3d Wavefunctions ofthe Tetrachlorocuprate Ion. // J. Chem. Phys. - 1965. - V. 42. - N. 10. - P. 3383-3395.86. Winter A., Thiel K., Zabel A., Klamroth T., Poppl A., Kelling A., Schilde U., TaubertA., Strauch P. Tetrahalidocuprates(ii) - structure and EPR spectroscopy. Part 2:tetrachloridocuprates(ii). // New J. Chem. - 2014. - V. 38.
- N. 3. - P. 1019-1030.87. Bonamartini-Corradi A., Battaglia L. P., Rubenacker J., Willett R. D., Grigereit T. E.,Zhou P., Drumheller J. E. Structural, EPR, and magnetic characterization ofbis(piperazinium)hexachlorocuprate-methanolandbis(1-methylpiperazinium)hexachlorocuprate. // Inorg. Chem. - 1992. - V. 31. - N. 18. - P. 3859-3863.88. Huang P., Ping H., Zhao M. G.
Theoretical examination of optical and EPR spectra forCu2+ ion in K2PdCl4 crystal. // J. Phys. Chem. Solids. - 2003. - V. 64. - N. 3. - P. 523-525.89. Chow C., Chang K., Willett R. D. Electron spin resonance spectra and covalent bondingin the square‐planar CuCl42− and CuBr42− ions. // J. Chem.
Phys. - 1973. - V. 59. - N. 5. - P.2629-2640.90. Dick A., Rahemi H., Krausz E. R., Hanson G. R., Riley M. J. The highly resolvedelectronic spectrum of the square planar CuCl42− ion. // J. Chem. Phys. - 2008. - V. 129. - N.21. - P. 214505-214512.91. Jeong C. K., Kim Y. I., Choi S. N. Synthesis and characterization of bis(N,N-dimethyl2-aminomethylthiophenium)tetrahalocuprate(II). // Bull. Korean Chem. Soc. - 1996. - V. 17.- N.
9. - P. 845-849.92. Thiel K., Klamroth T., Strauch P., Taubert A. On the interaction of ascorbic acid and thetetrachlorocuprate ion [CuCl4]2- in CuCl nanoplatelet formation from an ionic liquidprecursor (ILP). // Phys. Chem. Chem. Phys. - 2011. - V. 13. - N. 30. - P. 13537-13543.93. Голубева Е.Н., Лобанов А.В., Кокорин А.И. Промежуточные частицы в катализерадикальных реакций хлоруглеводородов // Хим. физика. - 2009. - Т.
28. - № 4. - C. 914.11294. Мыхаличко Б.М., Темкин О.Н., Мыськив М.Г. Полиядерные комплексыгалогенидов меди(I): координационная химия и каталитические превращенияалкинов. // Успехи химии. – 2000. – Т. 69. - №11. – С. 1042-1070.95. Subramanian L., Hoffmann R.
Bonding in halocuprates. // Inorg. Chem. - 1992. - V. 31.- N. 6. - P. 1021-1029.96. Hasselgren C., Stenhagen G., Öhrström L., Jagner S. On tuning the copper(I)coordination number in halocuprate(I) anions: new insights into cation control. // Inorg.Chim. Acta.