Механизмы реакций комплексов меди с алкильными радикалами (1105606), страница 20
Текст из файла (страница 20)
J., Baenziger N. C. Synthesis and X-ray structure ofbis(trifluoromethyl)(N,N-diethyldithiocarbamato)-copper;aremarkablystableperfluoroalkylcopper(III) complex. // J. Chem. Soc., Chem. Comm. - 1989. - V. - N. 21. - P.1633-1634.142. Yoshikai N., Nakamura E. Mechanisms of Nucleophilic Organocopper(I) Reactions. //Chem.
Rev. - 2011. - V. 112. - N. 4. - P. 2339-2372.143. van Koten G. Organocopper Compounds: From Elusive to Isolable Species, from EarlySupramolecular Chemistry with RCuI Building Blocks to Mononuclear R2–nCuII and R3–IIImCu7646.Compounds. A Personal View. // Organometallics. - 2012. - V. 31. - N. 22. - P. 7634-117144. Hu H., Snyder J. P.
Organocuprate Conjugate Addition: The Square-Planar ―CuIII‖Intermediate. // J. Am. Chem. Soc. - 2007. - V. 129. - N. 23. - P. 7210-7211.145. Gärtner T., Henze W., Gschwind R. M. NMR-Detection of Cu(III) Intermediates inSubstitution Reactions of Alkyl Halides with Gilman Cuprates. // J. Am. Chem. Soc. - 2007.- V. 129. - N.
37. - P. 11362-11363.146. Nakamura E., Yamanaka M., Mori S. Complexation of Lewis Acid withTrialkylcopper(III): On the Origin of BF3-Acceleration of Cuprate Conjugate Addition. // J.Am. Chem. Soc. - 2000. - V. 122. - N. 8. - P. 1826-1827.147. Bertz S. H., Cope S., Dorton D., Murphy M., Ogle C. A. Organocuprate CrossCoupling: The Central Role of the Copper(III) Intermediate and the Importance of theCopper(I) Precursor.
// Angew. Chem. Int. Ed. - 2007. - V. 46. - N. 37. - P. 7082-7085.148. Bartholomew E. R., Bertz S. H., Cope S. K., Murphy M. D., Ogle C. A., Thomas A. A.Serendipity strikes again-efficient preparation of lithium tetramethylcuprate(iii) via rapidinjection NMR. // Chem. Commun. - 2010. - V. 46. - N. 8. - P. 1253-1254.149. Bartholomew E.
R., Bertz S. H., Cope S., Dorton D. C., Murphy M., Ogle C. A.Neutral organocopper(III) complexes. // Chem. Commun. - 2008. - V. - N. 10. - P. 11761177.150. Baskaran S., Venuvanalingam P., Sivasankar C. Understanding the stability, electronicand molecular structure of some copper(III) complexes containing alkyl and non alkylligands: Insights from DFT calculations.
// J. Organomet. Chem. - 2011. - V. 696. - N. 13. P. 2627-2634.151. Snyder J. P. Elusiveness of CuIII Complexation; Preference for TrifluoromethylOxidation in the Formation of [CuI(CF3)4]− Salts. // Angew. Chem. Int. Ed. - 1995. - V. 34. N. 1. - P. 80-81.152. Putau A., Brand H., Koszinowski K. Tetraalkylcuprates(III): Formation, Association,and Intrinsic Reactivity. // J.
Am. Chem. Soc. - 2011. - V. 134. - N. 1. - P. 613-622.153. Adamo C., Barone V. Toward reliable density functional methods without adjustableparameters: The PBE0 model. // J. Chem. Phys. - 1999. - V. 110. - N. 13. - P. 6158-6170.154. Schmidt M. W., Baldridge K. K., Boatz J. A., Elbert S. T., Gordon M. S., Jensen J.
H.,Koseki S., Matsunaga N., Nguyen K. A., Su S., Windus T. L., Dupuis M., Montgomery J.118A. General atomic and molecular electronic structure system. // J. Comp. Chem. - 1993. - V.14. - N. 11. - P. 1347-1363.155. Gordon M. S., Schmidt M. W. Chapter 41 - Advances in electronic structure theory:GAMESS a decade later.// Theory and Applications of Computational Chemistry. Ed. C. E.Dykstra, G. Frenking, K. S. Kim and G. E. Scuseria. Amsterdam, Elsevier. - 2005. - P.1167-1189.156. Weigend F., Ahlrichs R.
Balanced basis sets of split valence, triple zeta valence andquadruple zeta valence quality for H to Rn: Design and assessment of accuracy. // Phys.Chem. Chem. Phys. - 2005. - V. 7. - N. 18. - P. 3297-3305.157. Noodleman L., Davidson E. R. Ligand spin polarization and antiferromagneticcoupling in transition metal dimers. // Chem. Phys. - 1986. - V. 109. - N. 1. - P. 131-143.158.
Bode B. M., Gordon M. S. Macmolplt: a graphical user interface for GAMESS. // J.Mol. Graph. - 1998. - V. 16. - N. 3. - P. 133-138.159. Ishida K., Morokuma K., Komornicki A. The intrinsic reaction coordinate. An abinitiocalculation for HNC→HCN and H−+CH4→CH4+H− // J. Chem. Phys. - 1977. - V. 66. - N.5. - P. 2153-2156.160.
Miertuš S., Scrocco E., Tomasi J. Electrostatic interaction of a solute with acontinuum. A direct utilizaion of AB initio molecular potentials for the prevision of solventeffects. // Chem. Phys. - 1981. - V. 55. - N. 1. - P. 117-129.161. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M.
A., Cheeseman J.R., Montgomery Jr. J. A., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S.,Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A.,Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., NakajimaT., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H.
P., Cross J. B.,Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J.,Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., SalvadorP., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O.,Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., BaboulA. G., Clifford S., Cioslowski J., Stefanov B.
B., Liu G., Liashenko A., Piskorz P.,Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara119A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C.,Pople J. A. Gaussian 03, Revision C.02 // Gaussian, Inc., Wallingford CT. - 2004.162. Wachters A. J. H. Gaussian Basis Set for Molecular Wavefunctions ContainingThird‐Row Atoms. // J.
Chem. Phys. - 1970. - V. 52. - N. 3. - P. 1033-1036.163. Hay P. J. Gaussian basis sets for molecular calculations. The representation of 3dorbitals in transition‐metal atoms. // J. Chem. Phys. - 1977. - V. 66. - N. 10. - P. 4377-4384.164. Krishnan R., Binkley J. S., Seeger R., Pople J. A. Self‐consistent molecular orbitalmethods. XX. A basis set for correlated wave functions. // J. Chem. Phys. - 1980. - V. 72. N.
1. - P. 650-654.165. McLean A. D., Chandler G. S. Contracted Gaussian basis sets for molecularcalculations. I. Second row atoms, Z=11–18. // J. Chem. Phys. - 1980. - V. 72. - N. 10. - P.5639-5648.166. Frisch M. J., Pople J. A., Binkley J. S. Self‐consistent molecular orbital methods 25.Supplementary functions for Gaussian basis sets. // J. Chem. Phys. - 1984. - V. 80. - N. 7. P.
3265-3269.167. Carpenter J. E. Weinhold F. Analysis of the geometry of the hydroxymethyl radical bythe ―different hybrids for different spins‖ natural bond orbital procedure // J. Mol. Struct.(Theochem). - 1988. - V. 169. - P.41-62.168. ChemCraft program, http://www.chemcraftprog.com.169. Neese F.
The ORCA program system. // WIREs Comput. Mol. Sci. - 2012. - V. 2. - N.1. - P. 73-78.170. Sinnecker S., Rajendran A., Klamt A., Diedenhofen M., Neese F. Calculation ofSolvent Shifts on Electronic g-Tensors with the Conductor-Like Screening Model(COSMO) and Its Self-Consistent Generalization to Real Solvents (Direct COSMO-RS). //J. Phys.
Chem. A. - 2006. - V. 110. - N. 6. - P. 2235-2245.171. Petrenko T., Kossmann S., Neese F. Efficient time-dependent density functional theoryapproximations for hybrid density functionals: Analytical gradients and parallelization. // J.Chem. Phys. - 2011. - V. 134. - N.
5. - P. 054116-054129.172. Neese F., Wennmohs F., Hansen A., Becker U. Efficient, approximate and parallelHartree–Fock and hybrid DFT calculations. A ‗chain-of-spheres‘ algorithm for the Hartree–Fock exchange. // Chem. Phys. - 2009. - V. 356.
- N. 1–3. - P. 98-109.120173. Shelaev I. V., Gostev F. E., Mamedov M. D., Sarkisov O. M., Nadtochenko V. A.,Shuvalov V. A., Semenov A. Y. Femtosecond primary charge separation in Synechocystissp. PCC 6803 photosystem I. // Biochim. Biophys. Acta. - 2010. - V. 1797. - N. 8. - P. 14101420.174. Kovalenko S. A., Dobryakov A. L., Ruthmann J., Ernsting N. P. Femtosecondspectroscopy of condensed phases with chirped supercontinuum probing.
// Phys. Rev. A. 1999. - V. 59. - N. 3. - P. 2369-2384.175. Ushakov E. N., Nadtochenko V. A., Gromov S. P., Vedernikov A. I., Lobova N. A.,Alfimov M. V., Gostev F. E., Petrukhin A. N., Sarkisov O. M. Ultrafast excited statedynamics of the bi- and termolecular stilbene-viologen charge-transfer complexesassembled via host–guest interactions. // Chem. Phys. - 2004. - V. 298.
- N. 1–3. - P. 251261.176. Vorobiev A.Kh., Chumakova N.A. // Nitroxides – Theory, Experiment andApplications. Ed. Kokorin A.I. Rijeka: InTech, 2012. - P.57.177. Мельников М.Я., Иванов В.Л. Экспериментальные методы химическойкинетики. Фотохимия. Издательство Московского университета. 2004.125 с.178. Зубанова Е.М., Голубева Е.Н., Жидомиров Г.М.. Механизмы взаимодействияхлоридных комплексов меди c органическими радикалами.
XXV конференция«Современная химическая физика». 2013. Тезисы докладов. С. 192.179. Golubeva E. N., Zubanova E. M., Zhidomirov G. M. The nature of Cu–C bond andcopper oxidation state in chloroorganocuprates [CuClnCH3]2−n. // Journal of PhysicalOrganic Chemistry. - 2013. - V. 26. - N. 9. - P. 724-729.180. Hathaway B. J., Copper. In Comprehensive coordination chemistry; Wilkinson G.,Gillard R. D., McCleverty J. A., Eds.; Pergamon. Oxford, 1987, 5, 533–774.181. Zubanova E.M., Golubeva E.N., Zhidomirov G.M.. Two mechanisms of chlorocupratereactions with alkyl radicals: dramatic role of nuclearity // Organometallics – 2014.