Высокоэффективные лактатные биосенсоры на основе инженерии иммобилизованной лактатоксидазы (1105559), страница 24
Текст из файла (страница 24)
T. 565,№ 2. C. 250-254.49. Patel N. G., Erlenkötter A., Cammann K., Chemnitius G. C. Fabrication andcharacterization of disposable type lactate oxidase sensors for dairy products and clinicalanalysis // Sens. Actuators B. 2000. T. 67, № 1. C. 134-141.50. Yashina E. I., Borisova A. V., Karyakina E. E., Shchegolikhina O. I., Vagin M. Y.,Sakharov D.
A., Tonevitsky A. G., Karyakin A. A. Sol−Gel Immobilization of LactateOxidase from Organic Solvent: Toward the Advanced Lactate Biosensor // Anal. Chem.2010. T. 82, № 5. C. 1601-1604.51. Salazar P., Martín M., O’Neill R. D., Roche R., González-Mora J. L. Biosensorsbased on Prussian blue modified carbon fibers electrodes for monitoring lactate in theextracellular space of brain tissue // Int. J. Electrochem.
Sci. 2012. T. 7, № 7. C. 59105926.52. Agüí L., Eguilaz M., Peña‐Farfal C., Yáñez‐Sedeño P., Pingarron J. e. M. LactateDehydrogenase Biosensor Based on an Hybrid Carbon Nanotube‐Conducting PolymerModified Electrode // Electroanalysis. 2009. T. 21, № 3‐5. C.
386-391.53. Sprules S. D., Hart J. P., Pittson R., Wring S. A. Evaluation of a new disposablescreen‐printed sensor strip for the measurement of NADH and its modification toproduce a lactate biosensor employing microliter volumes // Electroanalysis. 1996. T. 8,№ 6. C. 539-543.54. Jena B. K., Raj C. R. Amperometric L‐Lactate Biosensor Based on GoldNanoparticles // Electroanalysis.
2007. T. 19, № 7‐8. C. 816-822.55. Yu Y., Yang Y., Gu H., Zhou T., Shi G. Size-tunable Pt nanoparticles assembled onfunctionalized ordered mesoporous carbon for the simultaneous and on-line detection ofglucose and L-lactate in brain microdialysate // Biosens. Bioelectron. 2013. T. 41. C.511-518.56. He X.-R., Yu J.-H., Ge S.-G., Zhang X.-M., Lin Q., Zhu H., Feng S., Yuan L., HuangJ.-D. Amperometric L-lactate biosensor based on sol–gel film and multi-walled carbon153nanotubes/platinum nanoparticles enhancement // Chin.
J. Anal. Chem. 2010. T. 38, № 1.C. 57-61.57. Pereira A. C., Kisner A., Tarley C. R. T., Kubota L. T. Development of a carbonpaste electrode for lactate detection based on Meldola’s Blue adsorbed on silica gelmodified with niobium oxide and lactate oxidase // Electroanalysis. 2011. T. 23, № 6. C.1470-1477.58. Shakir I., Shahid M., Yang H. W., Cherevko S., Chung C.-H., Kang D. J.
α-MoO3nanowire-based amperometric biosensor for L-lactate detection // J. Solid StateElectrochem. 2012. T. 16, № 6. C. 2197-2201.59. Wang Y. T., Yu L., Wang J., Lou L., Du W. J., Zhu Z. Q., Peng H., Zhu J. Z. A novelL-lactate sensor based on enzyme electrode modified with ZnO nanoparticles andmultiwall carbon nanotubes // J.
Electroanal. Chem. 2011. T. 661, № 1. C. 8-12.60. Spohn U., Narasaiah D., Gorton L. The influence of the carbon paste composition onthe performance of an amperometric bienzyme sensor for L‐lactate // Electroanalysis.1996. T. 8, № 6.
C. 507-514.61. Pérez S., Fàbregas E. Amperometric bienzymatic biosensor for L-lactate analysis inwine and beer samples // Analyst. 2012. T. 137, № 16. C. 3854-3861.62. Rassaei L., Olthuis W., Tsujimura S., Sudhölter E. J. R., van den Berg A. Lactatebiosensors: current status and outlook // Anal. Bioanal. Chem. 2014. T. 406, № 1. C. 123137.63. Salazar P., Martín M., O’Neill R. D., Roche R., González-Mora J.
L. Surfactantpromoted Prussian Blue-modified carbon electrodes: Enhancement of electro-depositionstep, stabilization, electrochemical properties and application to lactate microbiosensorsfor the neurosciences // Colloids Surf., B. 2012. T. 92. C. 180-189.64. Schmitt R. E., Molitor H. R., Wu T. S. Voltammetric method for the determination oflactic acid using a carbon paste electrode modified with cobalt phthalocyanine // Int. J.Electrochem. Sci. 2012. T. 7, № 11. C. 10835-10841.65. Kulys J., Wang L., Maksimoviene A.
L-Lactate oxidase electrode based onmethylene green and carbon paste // Anal. Chim. Acta. 1993. T. 274, № 1. C. 53-58.66. Pereira A. C., Aguiar M. R., Kisner A., Macedo D. V., Kubota L. T. Amperometricbiosensor for lactate based on lactate dehydrogenase and Meldola Blue coimmobilized onmulti-wall carbon-nanotube // Sens. Actuators, B. 2007. T. 124, № 1. C.
269-276.67. Parra A., Casero E., Vázquez L., Jin J., Pariente F., Lorenzo E. Microscopic andvoltammetric characterization of bioanalytical platforms based on lactate oxidase //Langmuir. 2006. T. 22, № 12. C. 5443-5450.68. Serban S., El Murr N. Redox-flexible NADH oxidase biosensor: A platform forvarious dehydrogenase bioassays and biosensors // Electrochim. Acta. 2006.
T. 51, № 24.C. 5143-5149.69. Mao L., Yamamoto K. Amperometric on-line sensor for continuous measurement ofhypoxanthine based on osmium-polyvinylpyridine gel polymer and xanthine oxidasebienzyme modified glassy carbon electrode // Anal. Chim. Acta. 2000. T. 415, № 1. C.143-150.15470. Douglas C. G. Oliber-Sharpey Lectures On the coordination of the respiration andcirculation with variations in bodily // The Lancet.
1927. T. 210, № 5422. C. 213-218.71. Hollmann W. Zur Frage der Dauerleistungsfähigkeit // Fortschr. Med. 1961. T. 79. C.439-453.72. Wasserman K., McIlroy M. B. Detecting the threshold of anaerobic metabolism incardiac patients during exercise // Am. J. Cardiol. 1964.
T. 14, № 6. C. 844-852.73. MacLean D. A., Bangsbo J., Saltin B. Muscle interstitial glucose and lactate levelsduring dynamic exercise in humans determined by microdialysis // J. Appl. Phys. 1999.T. 87, № 4. C. 1483-1490.74. Claver J. B., Mirón M. C. V., Capitán-Vallvey L. F. Disposableelectrochemiluminescent biosensor for lactate determination in saliva // Analyst. 2009. T.134, № 7. C. 1423-1432.75. Schabmueller C.
G. J., Loppow D., Piechotta G., Schütze B., Albers J., Hintsche R.Micromachined sensor for lactate monitoring in saliva // Biosens. Bioelectron. 2006. T.21, № 9. C. 1770-1776.76. Malon R. S. P., Chua K. Y., Wicaksono D. H. B., Córcoles E.
P. Cotton fabric-basedelectrochemical device for lactate measurement in saliva // Analyst. 2014. T. 139, № 12.C. 3009-3016.77. Schmid K., Dittmer D. S. Blood and Other Body Fluids, Federation of AmericanSocieties of Experimental Biology, Washington, D // Book Blood and Other Body Fluids,Fed. of Amer. Societies of Experimental Biology, Washington, D / EditorC, 1961. C 285298.78.
Tenovuo J. O. Human saliva: CRC press. 1989. C. 118-125.79. Marek E. M., Volke J., Hawener I., Platen P., Mückenhoff K., Marek W.Measurements of lactate in exhaled breath condensate at rest and after maximal exercisein young and healthy subjects // J. Breath Res. 2010. T. 4, № 1. C. 1 - 8.80. Marek E., Mückenhoff K., Streckert H. J., Becher G., Marek W. Measurements of Llactate and H2O2 in exhaled breath condensate at rest and mild to moderate exercise inyoung and healthy subjects // Pneumologie (Stuttgart, Germany).
2008. T. 62, № 9. C.541-547.81. Van Haeringen N. Survey of ophthalmology // J. Clin. Biochem. Tears. 1981. T. 26,№ 2. C. 84-96.82. Van Haeringen N. J., Glasius E. Collection method dependant concentrations of somemetabolites in human tear fluid, with special reference to glucose in hyperglycaemicconditions // Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmol.1977. T.
202, № 1. C. 1-7.83. Faridnia M. H., Palleschi G., Lubrano G. J., Guilbault G. G. Amperometric biosensorfor determination of lactate in sweat // Anal. Chim. Acta. 1993. T. 278, № 1. C. 35-40.84. Mitsubayashi K., Suzuki M., Tamiya E., Karube I. Analysis of metabolites in sweatas a measure of physical condition // Anal. Chim. Acta. 1994.
T. 289, № 1. C. 27-34.85. Alzeer A. H., Al Otair H. A. K. Sweat chloride concentration in patients with heatstroke // J. of Taibah Univ. Med. Sci. 2014. Т. 9, № 1. С. 50-53.15586. Cai X., Yan J., Chu H., Wu M., Tu Y. An exercise degree monitoring biosensor basedon electrochemiluminescent detection of lactate in sweat // Sens. Actuators, B. 2010. T.143, № 2. C. 655-659.87. Green J. M., Pritchett R. C., Crews T. R., McLester J. R., Tucker D. C. Sweat lactateresponse between males with high and low aerobic fitness // Eur. J. Appl. Phys.