Высокоэффективные лактатные биосенсоры на основе инженерии иммобилизованной лактатоксидазы (1105559), страница 27
Текст из файла (страница 27)
132-138.161173. Engstrom R. C., Weber M., Wunder D. J., Burgess R., Winquist S. Measurementswithin the diffusion layer using a microelectrode probe // Anal. Chem. 1986. T. 58, № 4.C. 844-848.174. Liu H. Y., Fan F. R. F., Lin C. W., Bard A. J. Scanning electrochemical andtunneling ultramicroelectrode microscope for high-resolution examination of electrodesurfaces in solution // J. Am. Chem. Soc.
1986. T. 108, № 13. C. 3838-3839.175. Bard A. J., Fan F.-R. F., Pierce D. T., Unwin P. R., Wipf D. O., Zhou F. Chemicalimaging of surfaces with the scanning electrochemical microscope // Science. 1991. T.254, № 5028. C. 68-74.176.
Barker A. L., Gonsalves M., Macpherson J. V., Slevin C. J., Unwin P. R. Scanningelectrochemical microscopy: beyond the solid/liquid interface // Anal. Chim. Acta. 1999.T. 385, № 1. C. 223-240.177. Hussien E. M., Erichsen T., Schuhmann W., Maciejewska M. SECM visualizationof the spatial variability of enzyme-polymer spots. 3. Enzymatic feedback mode // Anal.Bioanal. Chem. 2008. T. 391, № 5. C. 1773-1782.178. Wittstock G., Hesse R., Schuhmann W. Patterned self‐assembled alkanethiolatemonolayers on gold. Patterning and imaging by means of scanning electrochemicalmicroscopy // Electroanalysis. 1997. T.
9, № 10. C. 746-750.179. Yasukawa T., Kaya T., Matsue T. Characterization and imaging of single cells withscanning electrochemical microscopy // Electroanalysis. 2000. T. 12, № 9. C. 653-659.180. Shiku H., Shiraishi T., Aoyagi S., Utsumi Y., Matsudaira M., Abe H., Hoshi H.,Kasai S., Ohya H., Matsue T. Respiration activity of single bovine embryos entrapped ina cone-shaped microwell monitored by scanning electrochemical microscopy // Anal.Chim. Acta. 2004. T. 522, № 1. C.
51-58.181. Laforge F. O., Velmurugan J., Wang Y., Mirkin M. V. Nanoscale imaging ofsurface topography and reactivity with the scanning electrochemical microscope // Anal.Chem. 2009. T. 81, № 8. C. 3143-3150.182. Sun P., Mirkin M. V. Kinetics of electron-transfer reactions at nanoelectrodes //Anal.
Chem. 2006. T. 78, № 18. C. 6526-6534.183. Fushimi K., Okawa T., Azumi K., Seo M. Heterogeneous growth of anodic oxidefilm on a polycrystalline titanium electrode observed with a scanning electrochemicalmicroscope // J. Electrochem. Soc. 2000. T. 147, № 2. C. 524-529.184.
Fushimi K., Seo M. Trial for evaluation of heterogeneity of passive film on iron by ascanning electrochemical microscope // Zairyo‐to‐Kankyo. 1997. T. 46, № 12. C. 797803.185. Lee Y., Amemiya S., Bard A. J. Scanning electrochemical microscopy. Theory andcharacterization of ring electrodes // Anal. Chem. 2001. Т. 73. №. 10. С. 2261-2267186. Kwak J., Bard A. J. Scanning electrochemical microscopy. Theory of the feedbackmode // Anal.
Chem. 1989. T. 61, № 11. C. 1221-1227.187. Slevin C. J., Macpherson J. V., Unwin P. R. Measurement of local reactivity atliquid/solid, liquid/liquid, and liquid/gas interfaces with the scanning electrochemical162microscope: Principles, theory, and applications of the double potential stepchronoamperometric mode // J. Phys. Chem. B. 1997. T.
101, № 50. C. 10851-10859.188. Cornut R., Lefrou C. New analytical approximation of feedback approach curveswith a microdisk SECM tip and irreversible kinetic reaction at the substrate // J.Electroanal. Chem. 2008. T. 621, № 2. C. 178-184.189. Bard A. J., Mirkin M. V., Unwin P. R., Wipf D. O. Scanning electrochemicalmicroscopy. Theory and experiment of the feedback mode with finite heterogeneouselectron-transfer kinetics and arbitrary substrate size // J. Phys. Chem. 1992. T.
96, № 4.C. 1861-1868.190. Wei C., Bard A. J., Mirkin M. V. Scanning electrochemical microscopy. 31.Application of SECM to the study of charge transfer processes at the liquid/liquidinterface // J. Phys. Chem. 1995. T. 99, № 43. C. 16033-16042.191. Amphlett J. L., Denuault G. Scanning electrochemical microscopy (SECM): Aninvestigation of the effects of tip geometry on amperometric tip response // J.
Phys.Chem. B. 1998. T. 102, № 49. C. 9946-9951.192. Cortés-Salazar F., Träuble M., Li F., Busnel J.-M., Gassner A.-L., Hojeij M.,Wittstock G., Girault H. H. Soft stylus probes for scanning electrochemical microscopy //Anal. Chem. 2009. T. 81, № 16. C. 6889-6896.193. Cortés-Salazar F., Lesch A., Momotenko D., Busnel J.-M., Wittstock G., Girault H.H.
Fountain pen for scanning electrochemical microscopy // Anal. Methods. 2010. T. 2,№ 7. C. 817-823.194. Sitnikova N. A., Borisova A. V., Komkova M. A., Karyakin A. A. Superstableadvanced hydrogen peroxide transducer based on transition metal hexacyanoferrates //Anal. Chem. 2011. T. 83, № 6. C. 2359-2363.195. Karyakin A. A., Karyakina E.
E., Gorton L. Amperometric biosensor for glutamateusing Prussian Blue-based "artificial peroxldase" as a transducer for hydrogen peroxide //Anal. Chem. 2000. T. 72, № 7. C. 1720-1723.196. Karyakin A. A., Kuritsyna E. A., Karyakina E. E., Sukhanov V. L. Diffusioncontrolled analytical performances of hydrogen peroxide sensors: Towards the sensorwith the largest dynamic range // Electrochim. Acta.
2009. T. 54, № 22. C. 5048-5052.197. Voronin O. G., Hartmann A., Steinbach C., Karyakin A. A., Khokhlov A. R., KranzC. Prussian Blue-modified ultramicroelectrodes for mapping hydrogen peroxide inscanning electrochemical microscopy (SECM) // Electrochem. Commun. 2012.
T. 23. C.102-105.198. Karyakin A. A., Kotel'nikova E. A., Lukachova L. V., Karyakina E. E., Wang J.Optimal environment for glucose oxidase in perfluorosulfonated ionomer membranes:Improvement of first-generation biosensors // Anal. Chem. 2002. T. 74, № 7. C. 15971603.199. Орлов А. В., Киселева С.
Г., Юрченко О. Ю., Карпачева Г. П. Особенностиокислительной полимеризации анилина в присутствии дополнительно внесенногосубстрата // Высокомолек. соед. А. 2000. T. 42. C. 2023-2032.163200. Karyakin A. A., Karyakina E. E., Gorton L. On the mechanism of H2O2 reduction atPrussian Blue modified electrodes // Electrochem. Communun. 1999. T. 1. C. 78-82.201.
Ricci F., Amine A., Palleschi G. Prussian Blue based screen printed biosensors withimproved characteristics of long-term lifetime and pH stability // Biosen. Bioelectron.2003. T. 18. C. 165-174.202. Hopkins R. H., Roberts R. H. The kinetics of alcoholic fermentation of sugars bybrewer's yeast. II. The relative rates of fermentation of glucose and fructose // Biochem.J. 1935. T. 29. C. 931-936.203.
Illanes A., Wilson L., Tomasello G. Temperature optimization for reactor operationwith chitin-immobilized lactase under modulated inactivation // Enzyme Microb.Technol. 2000. T. 27, № 3-5. C. 270-278.204. Jurado E., Camacho F., Luzón G., Vicaria J. M. A new kinetic model proposed forenzymatic hydrolysis of lactose by a β-galactosidase from Kluyveromyces fragilis //Enzyme Microb. Technol.
2002. T. 31, № 3. C. 300-309.205. Ladero M., Santos A., García J. L., Carrascosa A. V., Pessela B. C. C., GarcíaOchoa F. Studies on the activity and the stability of β-galactosidases from Thermus spstrain T2 and from Kluyveromyces fragilis // Enzyme Microb. Technol. 2002. T. 30, №3. C. 392-405.206.
De Maio A., El-Masry M. M., Portaccio M., Diano N., Di Martino S., Mattei A.,Bencivenga U., Mita D. G. Influence of the spacer length on the activity of enzymesimmobilised on nylon/polyGMA membranes: Part 1. Isothermal conditions // J. Mol.Catal. B. 2003. T. 21, № 4-6. C. 239-252.207. Samoshina N. M., Samoshin V. V. The Michaelis constants ratio for two substrateswith a series of fungal (mould and yeast) β-galactosidases // Enzyme Microb.
Technol.2005. T. 36, № 2–3. C. 239-251..