Электрохимическое модифицирование поверхности металлов с использованием фторсодержащих ионных жидкостей (1105545), страница 22
Текст из файла (страница 22)
– 2001. – V. 31. – P. 1089–1094.101. Qui F., Taylor A.W., Men S., Villar-Garcia I.J., Licence P. An ultra high vacuumspectroelectrochemical study of the dissolution of copper in the ionic liquid (N-methylacetate)4-picolinium bis(trifluoromethylsulfonyl)imide // Phys. Chem. Chem.Phys. – 2010. – V. 12. –P. 1982–1990.102. Perissi I., Bardi U., Caporali S., Lavacchi A. High temperature corrosion properties of ionicliquids // Corros. Sci. – 2006. – V. 48. – P.
2349-2362.103. Uerdingen M., Treber C., Balser M., Shmitt G., Werner C. Corrosion behaviour of ionic liquids// Green Chem. – 2005. – V. 7. – P. 321-325.104. Reddy R.G., Zhang Z., Arenas M.F., Blake D.M. Thermal stability and corrosivity evaluations ofionic liquids as thermal energy storage media // High. Temp. Mater. Process. – 2003. – V. 22.– P.
87-94.105. Bermudez M.-D., Jimenez A.-E., Martinez-Nicolas G. Study of surface interactions of ionicliquids with aluminium alloys in corrosion and erosion–corrosion processes // Appl. Surf. Sci. –2007. – V. 253. – P. 7295-7302.106. Shkurankov A., El Abedin S. Z., Endres F. AFM-assisted investigation of the corrosionbehaviour of magnesium and AZ91 alloys in an ionic liquid with varying water content // Aust.J. Chem. – 2007. – V. 60.
– P. 35-42.107. Greyson E.C., Babayan Y., Odom T.W. Directed Growth of Ordered Arrays of Small DiameterZnO Nanowires // Adv. Mater. – 2004. – V. 16. – P. 1348-1352.108. Wang X., Summers C.J., Wang Z.L. Large-Scale Hexagonal-Patterned Growth of Aligned ZnONanorods for Nano-optoelectronics and Nanosensor Arrays // Nano Lett. – 2004. – V. 4. –P. 423-426.109. Albrecht M., Ganesan S., Rettner C.T., Moser A., Best M.E., White R.L., Terris B.D.
Patternedperpendicular and longitudinal media: A magnetic recording study // IEEE Trans. Magn. – 2003.– V. 39. – P. 2323-2325.110. Braun P.V., Wiltzius P. Electrochemically grown photonic crystals // Nature. – 1999. – V. 402. –P. 603-604.111. Haes A.J., Hall W.P., Chang L., Klein W.L., Van Duyne R.P. A localized surface Plasmonresonance biosensors: First steps toward an assay for Alzheimer’s disease // Nano Lett. – 2004. –V. 4. – P.
1029-1034.112. Hoar T.P., Mott N.F. A mechanism for the formation of porous anodic oxide films onaluminium // J. Phys. Chem. Solids. – 1959. – V. 9. – P. 97-99.119113. Heber K.V. Studies on porous Al2O3 growth – I. Physical model // Electrochim. Acta. – 1978. –V.
23. – P. 127-133.114. Masuda H., Fukuda K. Ordered metal nanohole arrays made by a two-step replication ofhoneycomb structures of anodic alumina // Science. – 1995. – V. 268. – P. 1466-1468.115. Masuda H., Yosuya M., Ishida M. Spatially selective metal deposition into a pore-array structureof anodic porous alumina using a microelectrode // J. Appl. Phys. – 1998. – V. 37. – P. 10901092.116. Macak J.M, Tsuchiya H., Taveira L. et al.
Smooth anodic TiO2 nanotubes // Angew. Chem. Int.Ed. – 2005. – V. 44. – P. 7463-7465.117. Keller F., Hunter M.S., Robinson D.L. Structural features of oxide coatings on aluminum //J. Electrochem. Soc. – 1953. – V. 100. – P. 411-419.118. O’Sullivan J.P., Wood G.C. The morphology and mechanism of formation of porous anodicfilms on aluminum // Proc. R. Soc. Lond.
A. – 1970. – V. 317. – P. 511-543.119. Bandyopadhyay S., Miller A.E., Chang H.C., et al. Electrochemically assembled quasi-periodicquantum dot arrays // Nanotechnology. – 1996. – V. 7. – P. 360-371.120. Singh G.K., Golovin A.A., Aranson I.S.
Formation of self-organized nanoscale porous structuresin anodic aluminum oxide // Phys. Rev. B. – 2006. – V. 73. 205422-(1-12).121. Воробьева А.И., Уткина Е.А., Ходин А.А. Исследование механизма самоорганизации приформировании самоупорядоченной структуры пористого анодного оксида алюминия //Микроэлектроника. – 2007. – Т. 36. №6. – С. 437-445.122. Jessensky O., Müller F., Gosele U. Self organized formation of hexagonal pore arrays in anodicalumina // Appl. Phys. Lett. – 1998.
– V. 72. – P. 1173-1175.123. Su Z.X., Zhou W.Z. Formation mechanism of porous anodic aluminium and titanium oxides //Adv. Mater. – 2008. – V. 20. – P. 3663–3667.124. Garcia-Vergara S.J., Iglesias-Rubianes L., Blanco-Pinzon C.E., et al. Mechanical instability andpore generation in anodic alumina // Proc. R.
Soc. A. – 2006. – V. 462. – P. 2345-2358.125. Skeldon P., Shimizu K., Thompson G.E., et al. Barrier-type anodic films on aluminium inaqueous borate solutions: I. Film density and stopping power of anodic alumina for alphaparticles // Surf. Interface Anal. – 1983. – V. 5. – P. 247-251.126. Li A.P., Muller F., Birner A., et al. Hexagonal pore arrays with a 50–420 nm interpore distanceformed by self-organization in anodic alumina // J. Appl. Phys. – 1998. – V.
84. – P. 6023–6026.127. Su Z.X., Hahner G., Zhou W.Z. Investigation of the pore formation in anodic aluminium oxide //J. Mater. Chem. – 2008. – V.18. – P. 5787-5795.120128. Mor G.K., Varghese O.K., Paulose M., et al. A review on highly ordered, vertically orientedTiO2 nanotube arrays: Fabrication, material properties, and solar energy applications // Sol.Energ. Mat. Sol. Cells. – 2006. – V. 90. – P. 2011-2075.129. Macak J.M., Tsuchiya H., Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization oftitanium // Angew.
Chem. Int. Ed. – 2005. – V. 44. – P. 2100-2102.130. Taveira L.V., Macak J.M., Tsuchiya H., et al. Initiation and growth of self-organized TiO2nanotubes anodically formed in NH4F/(NH4)2SO4 electrolytes // J. Electrochem. Soc. – 2005. –V. 152. – P. B405-B410.131. Gilo M., Croitoru N. Study of HfO2 films prepared by ion-assisted deposition using a gridlessend-hall ion source // Thin Solid Films. – 1999.
– V. 350. – P. 203-208.132. Tsuchiya H., Schmuki P. Self-organized high aspect ratio porous hafnium oxide prepared byelectrochemical anodization // Electrochemistry Communications. – 2005. – V. 7. – P. 49-52.133. Ohtaki M., Peng J., Eguchi K., et al. Oxygen sensing properties of Ti-doped Nb2O5 // Sens.Actuator B-Chem. – 1993. – V. 14. – P. 495-496.134. Hutching G.H., Taylor S.H. Designing oxidation catalysts // Catal. Today.
– 1999. – V. 49. –P. 105-113.135. Aagard R.I. Optical waveguide characteristics of reactive dc-sputtered niobium pentoxide films// Appl. Phys. Lett. – 1975. – V. 27. – P. 605-607.136. Ohtani B., Iwai K., Nishimoto S., et al. Electrochromism of niobium oxide thin films preparedby the sol-gel process // J.
Electrochem. Soc. – 1994. – V. 141. – P. 2439-2442.137. D’alkaine C.V., De Souza L.M.M., Nart F.C. The anodic behaviour of niobium – I. The state ofthe art // Corros. Sci. – 1993. – V. 34. – P. 109-115.138. Sieber I., Hildebrand H., Friedrich A., et al. Formation of self-organized niobium porous oxideon niobium // Electrochem.Commun. – 2005. – V.
7. – P. 97-100.139. Kawasaki H., Namba J., Iwatsuji K., et al. NOx gas sensing properties of tungsten oxide thinfilms synthesized by pulsed laser deposition method // Appl. Surf. Sci. – 2002. – V. 197-198. –P. 547-551.140. Choi J., Lim J.H., Lee J., et al.
Porous niobium oxide films prepared by anodization–annealing–anodization // Nanotechnology. – 2007. – V. 18. 055603 (6pp).141. Zhao J.L., Wang X.X., Xu R.Q., et al. Preparation and growth mechanism of niobium oxidemicrocones by the anodization method // Electrochem. Solid State Lett. – 2007. – V. 10. –P. C31-C33.142. Masuda Y., Wakamatsu S., Koumoto K. Site-selective deposition and micropatterning oftantalum oxide thin films using a monolayer // J.
Eur. Ceram. Soc. – 2004. – V. 24. – P. 301-307.121143. Vermilea D.A. Ionic conductivity of anodic films at high field strengths: transient behavior // J.Electrochem. Soc. – 1957. – V. 104. – P. 427-433.144. Sieber I., Kannan B., Schmuki P. Self-assembled porous tantalum oxide prepared in H2SO4/HFelectrolytes // Electrochem. Solid State Lett. – 2005.
– V. 8. – P. J10-J12.145. Sieber I.V., Schmuki P. Porous tantalum oxide prepared by electrochemical anodic oxidation // J.Electrochem. Soc. – 2005. – V. 152. – P. C639-C644.146. Badilescu S., Ashrit P.V. Study of sol–gel prepared nanostructured WO3 thin films andcomposites for electrochromic applications // Solid State Ionics. – 2003.
– V. 158. – P. 187-197.147. Ord J.L., De Smet D.J. Anodic oxidation of tungsten in non-aqueous electrolytes // J.Electrochem. Soc. – 1992. – V. 139. – P. 359-363.148. Mukherjee N., Paulose M., Varghese O.K., et al. Fabrication of nanoporous tungsten oxide bygalvanostatic anodization // J. Mater. Res.
– 2003. – V. 18. – P. 2296-2299.149. Tsuchiya H., Macak J.M., Sieber I., et al. Self-organized porous WO3 formed in NaF electrolytes// Electrochem.Commun. – 2005. – V. 7. – P. 295-298.150. Berger S., Tsuchiya H., Ghicov A., et al. High photocurrent conversion efficiency in selforganized porous WO3 // Appl. Phys. Lett. – 2006. – V.