Электрохимическое модифицирование поверхности металлов с использованием фторсодержащих ионных жидкостей (1105545), страница 23
Текст из файла (страница 23)
88. – P. 203119-(1-3).151. De Tacconi N.R., Chenthamarakshan C.R., Yogeeswaran G., et al. Nanoporous TiO2 and WO3films by anodization of titanium and tungsten substrates: influence of process variables onmorphology and photoelectrochemical response // J. Phys. Chem. B. – 2006. – V. 110. –P. 25347-25355.152. Yamaguchi T. Application of ZrO2 as a catalyst and a catalyst support // Catal. Today. – 1994.
–V. 20. – P. 199-217.153. Ploc R.A., Miller M.A. Transmission and scanning electron microscopy of oxides anodicallyformed on zircaloy-2 // J. Nucl. Mater. – 1977. – V. 64. – P. 71-85.154. Tsuchiya H., Macak J.M., Sieber I., et al. Self-organized high-aspect-ratio nanoporous zirconiumoxides prepared by electrochemical anodization // Small. – 2005.
– V. 1. – P. 722-725.155. Tsuchiya H., Schmuki P. Thick self-organized porous zirconium oxide formed in H2SO4/NH4Felectrolytes // Electrochem.Commun. – 2004. – V. 6. – P. 1131-1134.156. Richter K., Campbell P.S., Baecker T., Schimitzek A., Yaprak D., Mudring A-V. Ionic liquidsfor the synthesis of metal nanoparticles // Phys. Status Solidi B. – 2013. – V. 250. – P. 11521164.157.
Shen X., Chen Q., Zhang J., Fu P. Supramolecular Structure in the Presence of Ionic Liquids /Chapter 19. Ionic Liquids: Theory, Properties, New Approaches / Ed. by Kokorin A.. Intech,Croatia. – 2011. P. 427-484.122158. Cooper E.R., Andrews C.D., Wheatley P.S., Webb P.B., Morris R.E. Ionic liquids and eutecticmixtures as solvent and template in synthesis of zeolite analogues // Nature. – 2004. – V. 430.
–P. 1012-1016.159. Gutel T., Santini C.C., Philippot K., Padua A., Pelzer K., Chaudret B., Chauvin Y., Basset J.M.Organized 3D-alkyl imidazolium ionic liquids could be used to control the size of in situgenerated ruthenium nanoparticles? // J. Mater. Chem. – 2009. – V. 19. – P. 3624-3631.160. Yang L.X., Zhu Y.J., Wang W.W., Tong H., Ruan M.L. Synthesis and formation mechanism ofnanoneedles and nanorods of manganese oxide octahedral molecular sieve using an ionic liquid// J. Phys.
Chem. B. – 2006. – V. 110. – P. 6609-6614.161. Jacob D.S., Genish I., Klein L.,Gedanken A. Carbon-Coated Core Shell Structured Copper andNickel Nanoparticles Synthesized in an Ionic Liquid // J. Phys. Chem. B. – 2006. – V. 110. –P. 17711-17714.162. Abbott A.P., Barron J.C., Frisch G., Gurman S., Ryder K.S., Silva A.F. Double layer effects onmetal nucleation in deep eutectic solvents // Phys. Chem. Chem. Phys. – 2011. – V.
13. –P. 10224-10231.163. Eiden P., Liu Q., El Abedin S.Z., Endres F., Krossing I. An experimental and theoretical study ofthe aluminium species present in mixtures of AlCl3 with the ionic liquids [BMP]Tf2N and[EMIm]Tf2N // Chem. Eur. J. – 2009. – V. 15. – P. 3426-3434.164. Wei Y.M., Fu Y.C., Yan J.W., Sun C.F., Shi Z., et al. Growth and shape-ordering of ironnanostructures on Au single crystalline electrodes in an ionic liquid: a paradigm of magnetostaticcoupling // J.
Am. Chem.Soc. – 2010. – V. 132. – P. 8152-8157.165. Hsieh Y-T., Leong T-I., Huang C-C., Yeh C-S., Sun I-W. Direct template-free electrochemicalgrowth of hexagonal CuSn tubes from an ionic liquid // Chem. Commun. – 2010. – V. 46. –P. 484-486.166. Yang J.M., Hsieh Y.T., Zhuang D.X., Sun I.W. Direct electrodeposition of FeCoZn wire arraysfrom a zinc chloride-based ionic liquid // Electrochem.Commun. – 2011.
– V. 13. – P. 1178–1181.167. Suarez P.A.Z., Einloft S., Dullius J.E.L., Souza R.F., Dupont J. Synthesis and physical-chemicalproperties of ionic liquids based on 1-n-butyl-3-methylimidazolium cation // J. Chim. Phys. –1998. – V. 95. – P. 1626-1639.168. HolbreyJ.D.,SeddonK.R.Thephasebehaviourof1-alkyl-3-methylimidazoliumtetrafluoroborates: Ionic liquids and ionic liquid crystals // J. Chem. Soc. Dalton Tran. – 1999.
–V. 13. – P. 2133-2140.169. Domanska U., Bogel-Lukasik E., Bogel-Lukasik R. 1-Octanol/Water Partition Coefficients of 1Alkyl-3-methylimidazolium Chloride // Chem. Eur. J. – 2003. – V. 9. – P. 3033-3041.123170. Ropel L., Belveze L.S., Aki S.N. Octanol-water partition coefficients of imidazolium-based ionicliquids // Green. Chem. – 2005. – V. 7. – P. 83-90.171. Методические разработки к спецкурсу по электрохимическим методам изучениякаталитических процессов / под ред. Г.Д.
Вовчеко. – М.: МГУ, 1984. – С.39.172. Ерофеев Б.В. Обобщенное уравнение химической кинетики и его применение к реакциямс участием твердых веществ // Докл. Акад. Наук СССP. – 1946. – Т.52. №6. – С.515-518.173. Латимер В. Окислительные состояния элементов и их потенциалы в водных растворах /под. ред. К.В. Астахова.
– М: ИЛ, 1954. – 400 с.174. Freire M.G., Neves C.M., Marrucho I.M., Coutinho J., Fernandes A.M. Hydrolysis ofTetrafluoroborate and Hexafluorophosphate Counter Ions in Imidazolium-Based Ionic Liquids //J. Phys. Chem. A. – 2010. – V. 114. – P. 3744-3749.175. Taubert A. Heavy elements in Ionic Liquids // Top. Curr. Chem. – 2009. – V. 290. – P. 127-159.176.
Endres F. Electrodeposition of a thin germanium film on gold from a room temperature ionicliquid // Phys. Chem. Chem. Phys. – 2001. – V. 3. – P. 3165-3174.177. Справочник по электрохимии / под ред. А.М. Сухотина. Л.: Химия, 1981. – С. 173.178. Billard I., Mekki S., Gaillard C. EuIII Luminescence in a Hydroscopic Ionic Liquid: Effect ofWater and Evidence for a Complexation Process // Eur. J. Inorg. Chem. – 2004. – V. 23.
–P. 1190-1197.179. ГOCT 9.301-86 Единая система защиты от коррозии и старения. Покрытия металлическиеи неметаллические неорганические. – М.: СТАНДАРТИНФОРМ, 2010. – С. 2.180. Ушакова Е.Ю., Тутукина Н.М., Маршаков И.К. Питтинговая коррозия меди и механизм ееинициирования в карбонатно-бикарбонатных растворах // Защита металлов. – 1991. –Т. 27. – С. 934-939.181. Chandrasekaran M., Noel M., Krishnan V. The use of BF4ˉ as the supporting electrolyte anion involtammetric studies on carbon electrodes - a cautionary note // Talanta. – 1990. – V.
37. –P. 695-699.182. Vignal V., Roux J.C., Flandrois S., Fevrier A. Nanoscopic studies of stainless steel electropolishing // Corros. Sci. – 2000. – V. 42. – P. 1041-1053.183. Magaino S. Corrosion rate of copper rotating-disc-electrode in simulated acid rain //Electrochim. Acta. – 1997. – V. 42.
– P. 377-382.184. Feng Y., Teo W.K., Siow K.S., Tan K.L., Hsieh A.K. The corrosion behaviour of copper inneutral tap water. Part I: Corrosion mechanisms // Corros. Sci. – 1996. – V. 38. – P. 369-385.185. Feng Y., Teo W.K., Siow K.S., Hsieh A.K. The corrosion behaviour of copper in neutral tapwater. Part II: Determination of corrosion rates // Corros. Sci. – 1996. – V.
38. – P. 387-395.124186. Молодов А.И., Лосев В.В. Закономерности образования низковалентных промежуточныхчастиц при стадийном электродном процессе разряда-ионизации металла // Итоги науки.Электрохимия. – 1971. – Т. 7. – С. 65-113.187. Молодов А.И. Кинетика быстрой первой стадии ионизации металлов // Защита металлов.– 1991.
– Т. 27. – С. 552-560.188. Klunker J., Schafer W. Anodic behavior of copper in acetonitrile: the influence of carbon dioxideand dimethylamine // J. Electroanal. Chem. – 1999. – V. 466. – P. 107-116.189. Kawakita J., Kobayashi K. Anodic polarization behavior of copper in propylene carbonate // J.Power Sources. – 2001. – V. 101. – P. 47-52.190. Chen P.Y., Sun I.W. Electrochemical study of copper in a basic 1-ethyl-3-methylimidazoliumchloride tetrafluoroborate room temperature molten salt // Electrochim. Acta. – 1999. – V.
45. –P. 441-450.191. Hussey C.L., King L.A., Carpio R.A. The Electrochemistry of Copper in a Room TemperatureAcidic Chloroaluminate Melt // J. Electrochem. Soc. – 1979. – V. 126. – P. 1029-1034.192. Murase K., Nitta K., Hirato T., Awakura. Electrochemical behaviour of copper in trimethyl-nhexylammoniumbis((trifluoromethyl)sulfonyl)amide,anammoniumimide-typeroomtemperatmolten salt // J. Appl. Electrochem. – 2001.
– V. 31. – P. 1089-1094.193. Ванюков Л.В., Кабанов Б.Н. Электрохимическое исследование пассивного железа // Журн.физ. химии. – 1954. – Т. 28, №6. – С. 1025-1035.194. Ismail A.S., El Abedin S.Z., Hofft O., Endres F. Unexpected decomposition of thebis(trifluoromethylsulfonyl)amide anion during electrochemical copper oxidation in an ionicliquid // Electrochem.Commun. – 2010. – V.
12. – P. 909-911.195. David O.C., Zarca G., Gorri D., Urtiaga A., Ortiz I. On the improved absorption of carbonmonoxide in the ionic liquid 1-hexyl-3-methylimidazolium chlorocuprate // Sep. Pur. Tech. –2012. – V. 97. – P.65-72.196. Scendo M., Uznanska J. The Effect of Ionic Liquids on the Corrosion Inhibition of Copper inAcidic Chloride Solutions // Int. J. Corros. – 2011. – V. 2011. ID. 718626(13pp).197. Sherif E.M., Park S.-M. Effects of 2-amino-5-ethylthio-1,3,4-thiadiazole on copper corrosion asa corrosion inhibitor in aerated acidic pickling solutions // Electrochim.
Acta. – 2006. – V. 51. –P. 6556−6562.198. Maiti A. Kumar A., Rogers R.D. Water-clustering in hygroscopic ionic liquids—an implicitsolvent analysis // Phys. Chem. Chem. Phys. – 2012. – V. 14. – P. 5139-5146.199. Neergat M., Weisbrod K.R. Electrodissolution of 304 stainless steel in neutral electrolytes forsurface decontamination applications // Corros. Sci. – 2011. – V. 53.
– P. 3983–3990.125200. Nockemann P., Thijs B., Pittois S., Thoen J., Glorieux C., Van Hecke K., Van Meervelt L.,Kirchner B., Binnemans K. Task-Specific Ionic Liquid for Solubilizing Metal Oxides // J. Phys.Chem. B. – 2006. – V. 110. – P. 20978-20992.201. Abbott A.P., Capper G., Davies D.L., McKenzie K.J., Obi S.U. Solubility of Metal Oxides inDeep Eutectic Solvents Based on Choline Chloride // J. Chem. Eng. Data. – 2006. – V. 51.