Диссертация (1103157), страница 26
Текст из файла (страница 26)
–– Vol. 55,no. 10. –– id 103502.[8] Agaltsov A. D., Novikov R. G. Uniqueness and non-uniqueness in acoustictomography of moving fluid // Journal of Inverse and Ill-Posed Problems. ––2016. –– Vol. 24, no. 3. –– P. 333–340.[9] Alessandrini G. Stable determination of conductivity by boundary measurements // Appl. Anal. –– 1988. –– Vol. 27. –– P. 153–172.[10] Arians S. Geometric approach to inverse scattering for the Schrödinger equation with magnetic and electric potentials // J.
Math. Phys. –– 1997. ––Vol. 38, no. 6. –– P. 2761–2773.157[11] Baykov S. V., Burov V. A., Sergeev S. N. Mode tomography of movingocean // Proc. of the 3rd European Conference on Underwater Acoustics. ––Heraklion : Crete University Press, 1996. –– P. 845–850.[12] Bernstein S. N. Sur les fonctions absolument monotones // Acta Mathematica. –– 1928. –– Vol. 52. –– P. 1–66.[13] Beylkin G. The inversion problem and applications of the generalized Radontransform // Communications on Pure and Applied Mathematics.
–– 1984. ––Vol. 37. –– P. 579–599.[14] Bochner S. Harmonic analysis and the theory of probability. –– Berkeley andLos Angeles : University of California press, 1955.[15] Boman J., Quinto E. T. Support theorems for real analytic radon transforms // Duke Math. J. –– 1987. –– Vol. 55. –– P. 943–948.[16] Bray W. O., Solmon D. C. Paley-wiener theorems on rank one symmetricspaces of noncompact type // Integral geometry and tomography (Arcata,CA, 1989).
–– Providence, RI : Amer. Math. Soc., 1990. –– Vol. 113 ofContemp. Math. –– P. 17–29.[17] Brown R. M., Salo M. Identifiability at the boundary for first-order terms //Appl. Anal. –– 2006. –– Vol. 85, no. 6-7. –– P. 735–749.[18] Calderón A. P. On an inverse boundary value problem // Seminar on numerical analysis and its applications to continuum physics / Ed. by W. H Meyer,M. A. Raupp. –– Rio de Janeiro : Sociedade Brasiliera de Matematica,1980. –– P.
65–73.[19] Capital-labor substitution and Economic Efficiency / K. J. Arrow, B. H. Chenery, B. S. Minhas, R. M. Solow // The Review of Economics and Statistics. –– 1961. –– Vol. 43, no. 3. –– P. 225–250.[20] Chern S. S. On integral geometry in Klein spaces // Ann. Of Math.
––1942. –– Vol. 43, no. 2. –– P. 178–189.[21] Colton D., Kress R. Integral equation methods in scattering theory. –– NewYork : John Wiley, 1983.158[22] Determining a magnetic Schrödinger operator from partial Cauchy data /D. Dos Santos Ferreira, D. Kenig, J. Sjöstrand, G. Uhlmann // Comm.Math. Phys. –– 2007. –– Vol. 271, no. 2. –– P. 461–488.[23] Douglas P. C., Cobb C. W. A Theory of Production // The American Economic Review.
–– 1928. –– Vol. 18, no. 1. –– P. 139–165.[24] Eskin G. Global uniqueness in the inverse scattering problem for theSchrödinger operator with external Yang-Mills potentials // Comm. Math.Phys. –– 2001. –– Vol. 222, no. 3. –– P. 503–531.[25] Eskin G., Ralston J. Inverse scattering problem for the Schrödinger equationwith magnetic potential at a fixed energy // Commun. Math. Phys. ––1995. –– Vol.
173. –– P. 173–199.[26] Eskin G., Ralston J. Inverse scattering problems for Schrödinger operatorswith magnetic and electric potentials // Inverse problems in wave propagation. –– New York : Springer, 1997. –– Vol. 90 of IMA Vol. Math. Appl. ––P. 147–166.[27] Eskin G., Ralston J. Inverse scattering problems for the Schrödinger operators with external Yang-Mills potentials // Partial differential equationsand their applications (Toronto 1995). –– Providence : AMS, 1997.
–– Vol. 12of CRM. Proc. Lecture Notes. –– P. 91–106.[28] Federer H. Geometric measure theory. –– NY : Springer, 1969.[29] Fokas A. S., Ablowitz M. J. On the inverse scattering of the time-dependentSchrödinger equation and the associated Kadomtsev-Petviashvili equation // Stud. Appl. Math. –– 1983. –– Vol. 69, no.
3. –– P. 211–228.[30] Fridman B. L. A uniqueness result for a generalized Radon transform //SIAM J. Math. Anal. –– 1995. –– Vol. 26, no. 6. –– P. 1467–1472.[31] Frondel M. Modeling Energy and Non-energy Substitution: A Brief Surveyof Elasticities // Energy Policy. –– 2011. –– Vol. 39, no. 8. –– P. 4601–4604.[32] Funk P. Über Eine Geometrishe Anwendung der Abelschen Integralgleichung // Math. Ann. –– 1916. –– Bd. 77.
–– S. 129–135.159[33] Gilbarg D., Trudinger N. S. Elliptic Partial Differential Equations of SecondOrder. Classics in Mathematics. –– Berlin Heidelberg : Springer-Verlag,2001.[34] Gonzalez F. B. Range characterization of the k-plane transform on realprojective spaces // 75 years of Radon transform (Vienna, 1992). –– Vol. IVof Conf. Proc. Lecture Notes Math.
Phys. –– Cambridge, MA : InternationalPress, 1994. –– P. 153–160.[35] Griliches Z. Capital-Skill Complementarity // Review of Economics andStatistics. –– 1969. –– Vol. 6. –– P. 456–468.[36] Guillarmou C., Tzou L. Identification of a connection from Cauchy dataon a Riemann surface with boundary // Geom. Funct. Anal.
–– 2011. ––Vol. 21, no. 2. –– P. 393–418.[37] Guillemin V., Sternberg S. Geometric Asymptotics. –– Amer. Math. Soc.,1990. –– Vol. 14 of Mathematical surveys and monographs.[38] Helgason S. A duality in integral geometry; some generalizations of theRadon transform // Bull. Am. Math. Soc. –– 1964. –– Vol. 70. –– P.
435–446.[39] Helgason S. A duality in integral geometry on symmetric spaces // Proc.U.S.-Japan seminar in differential geometry (Kyoto, 1965). –– Tokio : Nippon Hyoronsha, 1966. –– P. 37–56.[40] Henkin G. M., Novikov R. G. A multidimensional inverse problem in quantum and acoustic scattering // Inv. Problems. –– 1988. –– Vol. 4.
–– P. 103–121.[41] Henkin G. M., Shananin A. A. Bernstein theorems and Radon transform.Application to the theory of production functions // Trans. Math. Mon. ––1990. –– Vol. 81. –– P. 189–223.[42] Hicks J. R. The Theory of Wages. –– London : Macmillan, 1932.[43] Hörmander L. The analysis of linear partial differential operators I. ––Springer-Verlag, 1985.160[44] Houthakker H.
S. The Pareto distribution and the Cobb-Douglas productionfunction in activity analysis // Review of Economic Studies. –– 1955-1956. ––Vol. 23, no. 1. –– P. 27–31.[45] Imanuvilov O. Y., Yamamoto M. Inverse problem by Cauchy data on anarbitrary sub-boundary for systems of elliptic equations // Inverse Problems.
–– 2012. –– Vol. 28. –– id 095015.[46] Johansen L. Production functions. –– Amsterdam-London : North HollandCo., 1972.[47] Kainuth E. A course in commutative Banach algebras. –– New York :Springer-Verlag, 2009. –– Vol. 246 of Graduate texts in mathematics.[48] Kakehi T. Range characterization of Radon transforms on complex projective spaces // J. Math.
Kyoto Univ. –– 1992. –– Vol. 32, no. 2. –– P. 387–399.[49] Kashiwara M. On the structure of hyperfunctions // Sagaki no Ayumi. ––1970. –– Vol. 15. –– P. 19–72.[50] Korevaar J. Tauberian theory. A century of developments. –– Berlin Heidelberg : Springer-Verlag, 2004. –– Vol. 329 of A series of comprehensive studiesin mathematics.[51] Krupchyk K., Lassas M., Uhlmann G. Inverse problems with partial datafor a magnetic Schrödinger operator in an infinite slab or on a boundeddomain // Comm.
Math. Phys. –– 2012. –– Vol. 312, no. 1. –– P. 87–126.[52] Krupchyk K., Uhlmann G. Uniqueness in an inverse boundary problem fora magnetic Schrödinger operator with a bounded magnetic potential //Comm. Math. Phys. –– 2014. –– Vol. 327, no. 3. –– P. 993–1009.[53] Manakov S. V. The inverse scattering transform for the time dependentSchrödinger equation and Kadomtsev-Petviashvili equation // Physica D. ––1981. –– Vol.
3, no. 1, 2. –– P. 420–427.[54] Markoe A. Analytic tomography. –– Cambridge : Cambridge UniversityPress, 2006. –– Vol. 106 of Encyclopedia of Mathematics and its Applications.161[55] Nakamura G., Sun Z. Q., Uhlmann G. Global identifiability for an inverseproblem for the Schrödinger equation in a magnetic field // Math. Ann. ––1995. –– Vol. 303, no. 3. –– P.