Диссертация (1103157), страница 27
Текст из файла (страница 27)
377–388.[56] Nicoleau F. A stationary approach to inverse scattering for Schrödinger operators with first order perturbation // Comm. Part. Diff. Eq. –– 1997. ––Vol. 22, no. 3-4. –– P. 527–553.[57] Novikov R. G. The inverse scattering problem on a fixed energy level for thetwo-dimensional Schrödinger operator // J. Funct. Anal. –– 1992. –– Vol.103, no. 2.
–– P. 409–469.¯[58] Novikov R. G. ∂-methodwith nonzero background potential. Applicationto inverse scattering for the two-dimensional acoustic equation // Commun.Partial Diff. Eq. –– 1996. –– Vol. 21. –– P. 597–618.[59] Novikov R. G. Formulae and equations for finding scattering data fromthe Dirichlet-to-Neumann map with nonzero background potential // Inv.Problems. –– 2005.
–– Vol. 21, no. 1. –– P. 257–270.[60] Novikov R. G., Santacesaria M. Global uniqueness and reconstruction forthe multi-channel Gel’fand-Calderón inverse problem in two dimensions //Bull. Sci. Math. –– 2011. –– Vol. 135, no. 5. –– P. 421–434.[61] Novikov R. G., Santacesaria M. Mohochromatic recontruction algorithms fortwo-dimensional multi-channel inverse problems // Int. Math. Res. Not.IMRN. –– 2013. –– no. 6. –– P. 1205–1229.[62] Päivärinta L., Salo M., Uhlmann G. Inverse scattering for the magneticSchrödinger operator // J. Funct.
Anal. –– 2010. –– Vol. 259, no. 7. ––P. 1771–1798.[63] Panchenko A. An inverse problem for the magnetic Schrödinger equation andquasi-exponential solutions of nonsmooth partial differential equations //Inverse Problems. –– 2002. –– Vol. 18, no. 5. –– P. 1421–1434.[64] Paternain G. P., Salo M., Uhlmann G. Tensor tomography of surfaces //Inventiones Mathematicae. –– 2013.
–– Vol. 193, no. 1. –– P. 229–247.162[65] Radon J. Über die Bestimmung von Funktionen durch ihre Integralwertelängs bestimmter Mannigfaltigkeiten // Berichte Sächsische Akademie derWissenschaften. –– 1917. –– Bd. 29. –– S. 267–277.[66] Roussef D., Winters K. B. Two-dimensional vector flow inversion by diffraction tomography // Inv. Problems. –– 1994.
–– Vol. 10. –– P. 687–697.[67] Rychagov M. N., Ermert H. Reconstruction of fluid motion in acousticdiffraction tomography // J. Acoust. Soc. Am. –– 1996. –– Vol. 99, no. 5. ––P. 3029–3035.[68] Sato K. A Two-Level Constant-Elasticity-of-Sobstitution Production Function // Review of Economic Studies. –– 1967.
–– Vol. 34, no. 2. –– P. 201–218.[69] Sato K. Production Functions and Aggregation. –– Amsterdam : NorthHolland, 1975.[70] Schrader R., Taylor M. Small ~-asymptotics for quantum partition functionsassociated to particles in external Yang-Mills potentials // Comm. Math.Phys. –– 1984. –– Vol.
92, no. 4. –– P. 555–594.[71] Schrader R., Taylor M. Semiclassical asymptotics, gauge fields and quantumchaos // J. Funct. Anal. –– 1989. –– Vol. 83, no. 2. –– P. 258–316.[72] Schwartz L. Thèorie des distributions. –– Paris : Hermann, 1978.[73] Sharafutdinov V. A. Integral geometry of vector fields. –– Netherlands : VSP,1994.[74] Shiota T. An inverse problem for the wave equation with first order perturbation // Amer. J.
Math. –– 1985. –– Vol. 107, no. 1. –– P. 241–251.[75] Shurup A. S., Rumyantseva O. D. Numerical simulation of the functionalapproach for recovering vector fields in acoustic tomography // Quasilinearequations, inverse problems and their applications. –– Dolgoprudny, Russia : Phystech-polygraph, 2015. –– Conference handbook and proceedings. ––P. 11.[76] Sylvester J., Uhlmann G. A global uniqueness theorem for an inverse boundary value problem // Ann. of Math.
–– 1987. –– Vol. 125. –– P. 153–169.163[77] Taylor J. E. Microeconomics of Globalization: Evidence from Mexico,China, El Salvador, and the Galapagos Islands // Report to the Latin America and Carribean Regional Office of the World Bank. –– Washington DC,2001.[78] Taylor M., Uribe A. Semiclassical spectra of gauge fields // J. Funct.Anal. –– 1992. –– Vol. 110, no. 1. –– P. 1–46.[79] Wiener N.
The Fourier integral and certain of its applications. –– Cambridge :Cambridge University Press, 1933.[80] Xiaosheng L. Inverse scattering problem for the Schrödinger operator withexternal Yang-Mills potentials in two dimensions at fixed energy // Comm.Part. Diff. Eq. –– 2005. –– Vol.
30. –– P. 451–482.[81] Zhou X. Inverse scattering transform for the time dependent Schrödingerequation with applications to the KPI equation // Comm. Math. Phys. ––1990. –– Vol. 128, no. 3. –– P. 551–564.[82] Àãàëüöîâ À. Ä. Èññëåäîâàíèå îáîáùåííîãî ïðåîáðàçîâàíèÿ Ðàäîíà è åãîýêîíîìè÷åñêèå ïðèëîæåíèÿ // Óïðàâëåíèå è ïðèêëàäíàÿ ìàòåìàòèêà. Ò.1. Äîëãîïðóäíûé : Ôèçòåõ-ïîëèãðàô, 2012. Òðóäû 55-îé íàó÷íîé êîíôåðåíöèè ÌÔÒÈ. Ñ. 3436.[83] Àãàëüöîâ À. Ä. Èññëåäîâàíèå îáîáùåííîãî ïðåîáðàçîâàíèÿ Ðàäîíà è åãîýêîíîìè÷åñêèå ïðèëîæåíèÿ // Ñáîðíèê òåçèñîâ ëó÷øèõ êóðñîâûõ ðàáîò2012 ãîäà. Ìîñêâà : ÂÌÊ ÌÃÓ, 2012.
Ñ. 1718.[84] Àãàëüöîâ À. Ä. Èññëåäîâàíèå îáîáù¼ííîãî ïðåîáðàçîâàíèÿ Ðàäîíà è åãîýêîíîìè÷åñêèå ïðèëîæåíèÿ // Ñáîðíèê òåçèñîâ ëó÷øèõ äèïëîìíûõ ðàáîò2013 ãîäà. Ìîñêâà : ÂÌÊ ÌÃÓ, 2013. Ñ. 4446.[85] Àãàëüöîâ À. Ä. Òåîðåìû õàðàêòåðèçàöèè è îáðàùåíèÿ äëÿ îáîáù¼ííîãîïðåîáðàçîâàíèÿ Ðàäîíà // Òðóäû ÌÔÒÈ. 2013. Ò. 5, 4. Ñ.
4861.[86] Àãàëüöîâ À. Ä. Òåîðåìû õàðàêòåðèçàöèè, îáðàùåíèÿ è åäèíñòâåííîñòèäëÿ ïðåîáðàçîâàíèÿ Ðàäîíà ïî ãèïåðïîâåðõíîñòÿì óðîâíÿ ïîëîæèòåëüíîîäíîðîäíûõ ôóíêöèé // Óïðàâëåíèå è ïðèêëàäíàÿ ìàòåìàòèêà. Ò. 1. Äîëãîïðóäíûé : Ôèçòåõ-ïîëèãðàô, 2013. Òðóäû 56-îé íàó÷íîé êîíôåðåíöèè ÌÔÒÈ. Ñ.
3536.164[87] Àãàëüöîâ À. Ä. Òåîðåìû îáðàùåíèÿ è åäèíñòâåííîñòè äëÿ èíòåãðàëüíûõîïåðàòîðîâ òèïà Ðàäîíà // Òðóäû ÌÔÒÈ. 2014. Ò. 6, 2. Ñ. 314.[88] Àãàëüöîâ À. Ä. Òåîðåìà õàðàêòåðèçàöèè äëÿ îáîáù¼ííîãî ïðåîáðàçîâàíèÿ Ðàäîíà, âîçíèêàþùåãî â îäíîé ìîäåëè ìàòåìàòè÷åñêîé ýêîíîìèêè //Ôóíêö. àíàëèç è åãî ïðèë. 2015. Ò. 49, 3. Ñ. 5760.[89] Áåéòìåí Ã., Ýðäåéè À.
Ïðåîáðàçîâàíèÿ Ôóðüå, Ëàïëàñà, Ìåëëèíà. M. :Íàóêà, 1969. Ò. 1 èç Òàáëèöû èíòåãðàëüíûõ ïðåîáðàçîâàíèé.[90] Áóðîâ Â. À., Àëåêñååíêî Í. Â., Ðóìÿíöåâà Î. Ä. Ìíîãî÷àñòîòíîå îáîáùåíèå àëãîðèòìà Íîâèêîâà äëÿ ðåøåíèÿ îáðàòíîé äâóìåðíîé çàäà÷è ðàññåÿíèÿ // Àêóñòè÷åñêèé æóðíàë. 2009. Ò. 55, 6. Ñ. 784798.[91] Âèëåíêèí Í.
ß., Ãåëüôàíä È. Ì., Ãðàåâ Ì. È. Èíòåãðàëüíàÿ ãåîìåòðèÿ èñâÿçàííûå ñ íåé âîïðîñû òåîðèè ïðåäñòàâëåíèé. M. : Ôèçìàòãèç, 1962. Ò. 5 èç Îáîáù¼ííûå ôóíêöèè.[92] Ãåëüôàíä È. Ì., Ãðàåâ Ì. È., Øàïèðî Ç. ß. Äèôôåðåíöèàëüíûå ôîðìûè èíòåãðàëüíàÿ ãåîìåòðèÿ // Ôóíêö. àíàëèç è åãî ïðèë. 1969. Ò. 3, 2. Ñ. 2440.[93] Ãðèíåâè÷ Ï. Ã., Ìàíàêîâ Ñ.
Â. Îáðàòíàÿ çàäà÷à òåîðèè ðàññåÿíèÿ äëÿäâóìåðíîãî îïåðàòîðà Øð¼äèíãåðà, ∂¯-ìåòîä è íåëèíåéíûå óðàâíåíèÿ //Ôóíêö. àíàëèç è åãî ïðèë. 1986. Ò. 20, 2. Ñ. 1424.[94] Ãðèíåâè÷ Ï. Ã., Íîâèêîâ Ð. Ã. Àíàëîãè ìíîãîñîëèòîííûõ ïîòåíöèàëîâäëÿ äâóìåðíîãî îïåðàòîðà Øð¼äèíãåðà // Ôóíêö. àíàëèç è åãî ïðèë. 1985. Ò. 19, 4. Ñ. 3242.[95] Êðîíðîä À. Ñ. Î ôóíêöèÿõ äâóõ ïåðåìåííûõ // ÓÌÍ. 1950. Ò. 5, 1. Ñ.
24134.[96] Ìèíêîâñêié Ã. Î òåëàõú ïîñòîÿííîé øèðèíû // Ìàòåì. ñá. 1905. Ò. 25, 3. Ñ. 505508.[97] Ìîäåëèðîâàíèå ôóíêöèîíàëüíîãî ðåøåíèÿ çàäà÷è àêóñòè÷åñêîé òîìîãðàôèè ïî äàííûì îò êâàçèòî÷å÷íûõ ïðåîáðàçîâàòåëåé / Â. À. Áóðîâ,À. Ñ. Øóðóï, Ä. È. Çîòîâ, Î. Ä. Ðóìÿíöåâà // Àêóñòè÷åñêèé æóðíàë. 2013. Ò. 59, 3. Ñ. 391407.165[98] Íîâèêîâ Ð. Ã. Ìíîãîìåðíàÿ îáðàòíàÿ ñïåêòðàëüíàÿ çàäà÷à äëÿ óðàâíåíèÿ−∆ψ + (v(x) − Eu(x))ψ = 0 // Ôóíêö. àíàëèç è åãî ïðèë. 1988. Ò. 22, 4.
Ñ. 1122.[99] Íîâèêîâ Ð. Ã. Ïðèáëèæåííîå ðåøåíèå îáðàòíîé çàäà÷è êâàíòîâîé òåîðèèðàññåÿíèÿ ïðè ôèêñèðîâàííîé ýíåðãèè â ðàçìåðíîñòè 2 // Ñîëèòîíû, ãåîìåòðèÿ, òîïîëîãèÿ íà ïåðåêðåñòêàõ, Ñáîðíèê ñòàòåé. Ê 60-ëåòèþ ñî äíÿðîæäåíèÿ àêàäåìèêà Ñåðãåÿ Ïåòðîâè÷à Íîâèêîâà. Ì. : Íàóêà, 1999. Ò. 225 èç Òð.
ÌÈÀÍ. Ñ. 301318.[100] Íîâèêîâ Ð. Ã. Èòåðàöèîííûé ïîäõîä ê íåïåðåîïðåäåëåííîé îáðàòíîé çàäà÷å ðàññåÿíèÿ ïðè ôèêñèðîâàííîé ýíåðãèè // Ìàòåì. ñá. 2015. Ò.206, 1. Ñ. 131146.[101] Íîâèêîâ Ð. Ã., Õåíêèí Ã. Ì. ∂¯-óðàâíåíèå â ìíîãîìåðíîé îáðàòíîé çàäà÷åðàññåÿíèÿ // ÓÌÍ. 1987. Ò. 42, 3. Ñ. 93152.[102] Íîâèêîâ Ð. Ã., Õåíêèí Ã. Ì. Ïîëÿ ßíãà-Ìèëëñà, ïðåîáðàçîâàíèå ÐàäîíàÏåíðîóçà è óðàâíåíèÿ Êîøè-Ðèìàíà // Êîìïëåêñíûé àíàëèç - ìíîãèåïåðåìåííûå - 5. Ì. : ÂÈÍÈÒÈ, 1989.
Ò. 54 èç Èòîãè íàóêè è òåõí.Ñåð. Ñîâðåì. ïðîáë. ìàò. Ôóíäàì. íàïðàâëåíèÿ. Ñ. 113196.[103] Ïåòðîâ À. À., Ïîñïåëîâ È. Ã. Ñèñòåìíûé àíàëèç ðàçâèâàþùåéñÿ ýêîíîìèêè: ê òåîðèè ïðîèçâîäñòâåííûõ ôóíêöèé. 1. // Èçâ. ÀÍ ÑÑÑÐ. Òåõí.êèáåðíåòèêà. 1979. 2. Ñ. 1827.[104] Ïåòðîâ À. À., Ïîñïåëîâ È. Ã., Øàíàíèí À. À. Îïûò ìàòåìàòè÷åñêîãî ìîäåëèðîâàíèÿ ýêîíîìèêè. Ì.
: Ýíåðãîàòîìèçäàò, 1996.[105] Ïîâûøåíèå ðàçðåøåíèÿ äâóìåðíîãî òîìîãðàôèðîâàíèÿ ïî ïîïåðå÷íîé êîîðäèíàòå è ðàçäåëüíîå âîññòàíîâëåíèå óïðóãèõ è âÿçêèõ õàðàêòåðèñòèêðàññåèâàòåëÿ / Î. Ä. Ðóìÿíöåâà, Â. À. Áóðîâ, À. Ë. Êîíþøêèí, Í. À. Øàðàïîâ // Àêóñòè÷åñêèé æóðíàë. 2009. Ò. 55, 4. Ñ. 606622.[106] Ñëàâíîâ À. À., Ôàääååâ Ë. Ä.
Ââåäåíèå â êâàíòîâóþ òåîðèþ êàëèáðîâî÷íûõ ïîëåé. 2 èçä. Ì. : Íàóêà, 1988.[107] Ôàääååâ Ë. Ä. Ðàñòóùèå ðåøåíèÿ óðàâíåíèÿ Øðåäèíãåðà // Äîêëàäû ÀÍÑÑÑÐ. 1965. Ò. 165, 3. Ñ. 514517.166[108] Ôàääååâ Ë. Ä. Îáðàòíàÿ çàäà÷à êâàíòîâîé òåîðèè ðàññåÿíèÿ ii. Ì. :ÂÈÍÈÒÈ, 1974. Ò. 3 èç Ñîâðåìåííûå ïðîáëåìû ìàòåìàòèêè (Èòîãèíàóêè è òåõíèêè). Ñ. 93181.[109] Øàíàíèí À. À. Èññëåäîâàíèå îáîáù¼ííîé ìîäåëè ÷èñòîé îòðàñëè // Ìàòåì. ìîäåëèðîâàíèå.
1997. Ò. 9, 10. Ñ. 7382.[110] Øàíàíèí À. À. Îáîáù¼ííàÿ ìîäåëü ÷èñòîé îòðàñëè ïðîèçâîäñòâà // Ìàòåì. ìîäåëèðîâàíèå. 1997. Ò. 9, 9. Ñ. 117127..