Диссертация (1102877), страница 10
Текст из файла (страница 10)
Для этого необходимонажать на кнопку «Открыть файл» и выбрать необходимый документ.После выбора параметров моделирования необходимо нажать кнопку «Начать расчет».Расчет можно прервать в любой момент времени нажатием на клавишу ESC на клавиатуре компьютера. Выход из программы моделирования осуществляется нажатием соответствующейкнопки в окне программы.60Рис. 3.5. Фрагмент окна программы с результатами моделирования.После проведения расчетов в окне программы слева строятся графики, отражающие результаты численного моделирования (Рис.
3.5). На графиках представлены четыре зависимостиот продольной координаты z : циклотронный радиус пучка, продольная скорость пучка, разброс продольных скоростей и КПД преобразования циклотронной энергии пучка в энергию егопродольного движения. Циклотронный радиус вращения Rc увеличивается при снижении величины продольного магнитного поля, продольная скорость v z растет при преобразовании циклотронной энергии потока в энергию его продольного движение.
При этом в ленточном потокепод действием сил пространственного заряда растет разброс продольных скоростей по мерепродвижения пучка вдоль области взаимодействия, что сказывается в итоге на КПД преобразования. На выходе из области взаимодействия фиксируются КПД и разброс продольных скоростей, а также значения циклотронного радиуса RcMax и продольной скорости v z max по отношению к их начальным значениям Rc 0 и vz 0 .По окончании расчетов координаты и скорости частиц на каждом этапе интегрированиязначения КПД и разброса продольных скоростей записываются в отдельные файлы формата .xlsдля постобработки.Представленная программа использовалась для исследования динамики ленточногоэлектронного потока.
На первом этапе моделирования была рассмотрена транспортировка элек61тронного потока во внешнем однородном магнитном поле в отсутствие циклотронного вращения.Далее задавался циклотронный радиус пучка и проводилось численное моделированиединамики ленточного электронного потока в аксиально- и плоско-симметричном магнитномполях поочередно. На наш взгляд, выбранная таким образом конфигурация сопровождающегомагнитного поля при определенных параметрах неоднородных полей может помочь избежатьвозникновения существенных искажений пучка, связанных с действием сил пространственногозаряда при его транспортировке вдоль области взаимодействия.На третьем этапе изучалась эффективность преобразования энергии циклотронного вращения ленточного электронного потока в энергию его поступательного движения, а также былаобсуждена возможность применения ленточного электронного потока в поперечно-волновыхустройствах СВЧ.Перейдем к непосредственным результатам моделирования.§3.4.
Распространение ленточного электронного потока в отсутствие циклотронного вращения во внешнем однородном магнитном полеОсуществлялась транспортировка ленточного электронного потока во внешнем однородном продольном магнитном полеBx 0 ,By 0 ,(3.7)B z B0в отсутствие кругового вращения.Параметры моделирования представлены в таблице 3.1.Таблица 3.1ПараметрОбозначениеЗначениеПотенциал пучка, кВU010Ток пучка, АI01-20Первеанс пучка, мкА/В3/2p1-20Входная мощность пучка, кВтP010-20062ПараметрОбозначениеЗначениеСечение пучка, мм2S2,5х40 (1:16)Плотность тока, А/cм2j1-20Число частицNp142Число частиц по высотеNh3Число периодов инжекции пучкаNi3Начальная фаза влета, град.00Циклотронный радиус, ммRc0Напряженность магнитного поля, ТлB00,0876Сечение области взаимодействия, мм2S040х80l5Длина области взаимодействия(в циклотронных длинах волн)Прослеживалась форма поперечного сечения ленточного потока и спектр продольныхскоростей в зависимости от первеанса p I 0 U 03 2 пучка.
Согласно таблице 3.1 первеанспучка p менялся в пределах 1-20 мкА/В3/2 (соответствует значениям тока пучка I 0 = 1-20 А иплотности тока j = 1-20 А/cм2). При таких значениях первеанса входная мощность пучка P0 составила 10-200 кВт в непрерывном режиме.Отметим, что большие значения первеанса ленточного электронного потока не должнывызывать недоумения (в вакуумной электронике принято говорить о реально достижимых значениях первеанса до p 2 ). Большие значения первеанса достигаются за счет большей площади сечения ленточного пучка в сравнении с цилиндрическим пучком (и соответственнобольшей величины электрического тока при одинаковой для обоих пучков плотности тока).Обозначим X x А и Y y B , где А – ширина области взаимодействия, B – высотаобласти взаимодействия.
Пусть T – время пролета области взаимодействия. Спектр продольных скоростей будем определять по среднему ряду частиц (в среднем ряду всего N 48 частиц).63Спектр продольных скоростей остается практически неизменным для p 1 . На выходеиз области взаимодействия края пучка едва закручены. Для случая p 5 начинает проявлятьсяэффект, когда центральные частицы пучка ускоряются сильнее краевых.
Края пучка скручиваются сильнее.t T /2t 0t TРис. 3.6. Поперечные сечения ленточного пучка с p 1 (верхний ряд) и спектр продольныхскоростей (нижний ряд) при продвижении пучка вдоль оси z .t T /2t 0t TРис. 3.7. Поперечные сечения ленточного пучка с p 5 (верхний ряд) и спектр продольныхскоростей (нижний ряд) при продвижении пучка вдоль оси z .64Таким образом, в случае однородного внешнего фокусирующего магнитного поля ленточный электронный пучок при заданных параметрах системы практически сохраняет формусвоего поперечного сечения при токе пучка, соответствующем значениям первеанса p = 1-5мкА/В3/2 (рис.3.6 и 3.7).t T /2t 0t TРис. 3.8.
Поперечные сечения ленточного пучка с p 10 (верхний ряд) и спектр продольныхскоростей (нижний ряд) при продвижении пучка вдоль оси z .t 0t T 2t TРис. 3.9. Поперечные сечения ленточного пучка с p 20 (верхний ряд) и спектр продольных скоростей (нижний ряд) при продвижении пучка вдоль оси z .65С первеансом p 10 существенно проявляется диокотронная неустойчивость ленточного электронного пучка (рис. 3.8).
Центральные частицы пучка ускоряются еще быстрее краевых частиц. Края пучка отчетливо скручиваются. Пучок начинает пульсировать (на рис. 3.8промежуточное сечение шире сечения пучка на выходе из области взаимодействия).Еще сильнее эффект диокотронной неустойчивости и разброса продольных скоростейпроявляется при первеансе p 20 (рис.
3.9). Края ленточного пучка начинают разрушаться,распадаясь на отдельные фрагменты. Сам пучок сильно разворачивается вокруг оси z (вплотьдо 45 градусов). Пульсации в пучке усиливаются.Таким образом, увеличение тока пучка I 0 до предельных значений (соответствующихзначениям первеанса p = 10-20 мкА/В3/2) может приводить к заметным искажениям формыпоперечного сечения вдоль области дрейфа (рис.3.8 и 3.9), пульсациям внешних размеров сечения и возбуждению диокотронной неустойчивости.
По-видимому, этому же способствует отклонение начальной толщины пучка b от его равновесного значения [10]be 5,41 10 72I 0aB02 U 0,(3.8)где a – ширина ленточного потока. В нашем случае, be 0,705 мм.Подведем промежуточные итоги. Ленточный электронный пучок дает возможность реализовать устойчивую форму электронного потока и малый разброс продольных скоростей приувеличении значений первеанса пучка до p 5 мкА/В3/2 (соответствует плотности тока j 5А/cм2). При увеличении первеанса до значений p = 10-20 мкА/В3/2 (соответствует плотноститока j = 10-20 А/cм2) возможно возникновение диокотронной неустойчивости и дестабилизация ленточного пучка.Для стабилизации ленточного потока можно использовать два пути – уменьшение толщины пучка до близкой к равновесной (3.8) для уменьшения пульсаций в пучке и снижениеплотности тока пучка за счет увеличения ширины пучка.
При этом ширина пучка должна растибыстрее, чем уменьшаться его толщина, чтобы уменьшалась плотность тока в пучке.§3.5. Распространение ленточного электронного потока с циклотронным вращением во внешнем аксиально-симметричном магнитном полеДалее в программе задавался циклотронный радиус пучка Rc и проводился траекторныйанализ распространения ленточного пучка в неоднородном аксиально-симметричном магнитном поле. Вновь исследовалась форма поперечного сечения ленточного потока и спектр про66дольных скоростей в зависимости от первеанса пучка p .
Циклотронный радиус определяетсявыражениемRc 1c2eU 0W,me(3.9)где W – отношение поперечной (циклотронной) энергии ленточного электронного потока к энергии его продольного движения.Компоненты аксиально-симметричного магнитного поля в рамках многопериодной модели в параксиальном приближении задаются следующими выражениями:B x ( x, z ) xB y ( y, z ) y4lB0 (1 C 0 ) sinz2l,zB0 (1 C 0 ) sin,4l2lB z ( z ) 0.5B0 (1 C 0 (1 C 0 ) coszl(3.10)),где B0 – величина магнитного поля на входе в область реверсивного изменения магнитного поля, C0 B1 B0 – параметр изменения магнитного поля, B1 – величина магнитного поляна выходе из области реверсивного изменения магнитного поля.Параметры модели представлены в таблице 3.2.Таблица 3.2ПараметрОбозначениеЗначениеПотенциал пучка, кВU010Ток пучка, АI01-20Первеанс пучка, мкА/В3/2p1-20Входная мощность пучка, кВтP010-200Сечение пучка, мм2S2,5х40 (1:16)Плотность тока, А/cм2j1-20Число частицNp142Число частиц по высотеNh3Число периодов инжекции пучкаNi367ПараметрОбозначениеЗначениеНачальная фаза влета, град.00Отношение поперечной энергии к продольнойW2Циклотронный радиус, ммRc5,45Напряженность магнитного поля, ТлB00,0876Циклотронная частота, ГГцf c c 22,45Параметр изменения магнитного поляC00,1Сечение области взаимодействия, мм2S060х120l5Длина области взаимодействия(в циклотронных длинах волн)t T 2t 0t TРис.
3.10. Поперечные сечения ленточного пучка с p 1 (верхний ряд) и спектр продольныхскоростей (нижний ряд) при продвижении пучка вдоль оси z .Согласно рис. 3.10 для p 1 продольная скорость частиц практически не изменяетсяпри транспортировке пучка вдоль области взаимодействия, края пучка практически не скручиваются. Однако пучок поворачивается вокруг оси z . При этом в отличие от случая однородного магнитного поля пучок поворачивается в противоположную сторону, что связано превалированием циклотронного вращения над силами пространственного заряда.
Отметим также, чтосечение пучка расширяется, плотность тока в потоке падает.68t 0t T 2t TРис. 3.11. Поперечные сечения ленточного пучка с p 5 (верхний ряд) и спектр продольныхскоростей (нижний ряд) при продвижении пучка вдоль оси z .t T 2t 0t TРис. 3.12. Поперечные сечения ленточного пучка с p 10 (верхний ряд) и спектр продольныхскоростей (нижний ряд) при продвижении пучка вдоль оси z .При p 5 продольная скорость частиц существенно изменяется при транспортировкепучка вдоль области взаимодействия (до 70%), стабильность ленточного пучка несколько снижается (рис.
3.11). Прослеживается плавное увеличение скорости от одного края пучка к другому. Однако, несмотря на значительное различие скоростей частиц, искажения формы сечения69ленточного потока достаточны небольшие. Угол поворота пучка вокруг оси z уменьшается всравнении со случаем p 1 .Случай p 10 немногим отличается от случая p 5 (рис. 3.11).