Диссертация (1102344), страница 17
Текст из файла (страница 17)
Tables of Bond Lengths determined byX-Ray and Neutron Diffraction. Part I. Bond Lengths in Organic Compounds //Journal of the Chemical Society, Perkin Transactions, - 1987, - v.2, - pp.S1-S19[78] Brooks, B. R.; Field, M. J.; Gao, J.; and Thompson M. A. Hybrid Quantumand Classical Mechanical Methods for Studying Biopolymers in Solution // PacificSymposium on Biocomputing Eds.
L. Hunter and T. E. Klein, - 1996, - WorldScientific, New Jersey.[79] Franzini M. The A and B mica layers and the crystal structure of sheetsilicates // Contributions to Mineralogy and Petrology, -1969, - v.21(3), - pp.203224[80] Leng Y., Cummings P.T. Hydration structure of water confined between micasurfaces // The Journal Of Chemical Physics, - 2006, - v. 124-074711, - pp. 1-3121[81] Kim J., Choi J., Lee M.J., Park B.H., Bukhvalov D., Son Y.
W., Yoon D.,Cheong H., Yun J.N., Jung Y., Park J.Y., Salmeron M. Between Scylla andCharybdis: Hydrophobic Graphene-Guided Water Diffusion on HydrophilicSubstrates // Scientific Reports, - 2013, - v.3, - pp. 2309 1-6[82] Smith J. S. Molecular Dynamics and Quantum Chemistry Studies of theInteractions in Polymer Matrix Nanocomposites. // Department of MaterialsScience and Engineering, University of Utah, 2009[83]Scott D.W., Messerly J.F., Todd S.S., Guthrie G.B., Hossenlopp I.A., MooreR.T., Osborn A., Berg W.T. and Mccullough J.P.
Hexamethyldisiloxane :Chemical Thermodynamic Properties And Internal Rotation About The SiloxaneLinkage // J. Phys. Chem., -1961, - v.65 (8), - pp.1320–1326[84]Smith J.S., Borodin O., and Smith G.D. A Quantum Chemistry Based ForceField for Poly (dimethylsiloxane) // J.Phys.Chem.B, - 2004, - 108, - pp.2034020350[85] Frischknecht A.L. and Curro J.G. Improved United Atom Force Field forPoly(dimethylsiloxane) // Macromolecules, - 2003, - v.36, - pp.2122-2129[86]Smith J.S., Borodin O., Smith G.D., Kobera E.M.
Molecular DynamicsSimulation and Quantum Chemistry Study of Poly (dimethylsiloxane) SilicaNanoparticle Interactions // Journal of Polymer Science Part B: Polymer Physics, 2007, - v.45(13), - pp.1599–1615[87] Timofeeva T.V., Dubchak I.L., Shklover V.E., Struehkov Yu.T. Choice OfParameters For Calculating The Conformations Of Molecules With A Si-OBond // Theoretical and Experimental Chemistry, - 1981, - v.17(5), - pp.525-529[88] Gruber T.M., Gross C.A. Multiple sigma subunits and the partitioning ofbacterial transcription space // Annu. Rev. Microbiol. - 2003, - v.57, - pp.441-66.122[89] Malhotra A., Severinova E., Darst S. A. Crystal structure of a sigma 70subunit fragment from E.
coli RNA polymerase // Cell, - 1996, - v.87, - pp.127136.[90] Campbell E. A., Muzzin O., Chlenov M., Sun J. L., Olson C. A., Weinman O.,Trester-Zedlitz M. L., Darst S. A. Structure of the bacterial RNA polymerasepromoter specificity sigma subunit // Mol Cell, - 2002, - v.9, - pp.527-539.[91] Schwartz E. C., Shekhtman A., Dutta K., Pratt M. R., Cowburn D., Darst S.,Muir T. W. A full-length group 1 bacterial sigma factor adopts a compact structureincompatible with DNA binding // Chem Biol, - 2008, - v.15, - pp.1091-1103.[92]Dombroski A. J., Walter W. A., Gross C. A. Amino-terminal amino acidsmodulate sigma-factor DNA-binding activity // Genes Dev, - 1993, -v.7, - pp.24462455.[93] Callaci S., Heyduk E., Heyduk T.
Core RNA polymerase from E. coli inducesa major change in the domain arrangement of the sigma 70 subunit // Mol Cell, 1999, - v.3, - pp.229-238.[94]Callaci S., Heyduk T. Conformation and DNA binding properties of a singlestranded DNA binding region of sigma 70 subunit from Escherichia coli RNApolymerase are modulated by an interaction with the core enzyme // Biochemistry,- 1998, - v.37, - pp.3312-3320.[95] Lowe PA, Aebil U, Gross C, Burgess RR.
In vitro thermal inactivation of atemperature-sensitive σ subunit mutant (rpoD8OO) of Escherichia coli RNApolymerase proceeds by aggregation // J Biol Chem. - 1981, - v.256, - pp.2010-5.[96] Ferguson A.L., Hughes A.D., Tufail U., Baumann C.G., Scott D.J., HoggettJ.G. Interaction of σ70 with Escherichia coli RNA polymerase core enzymestudied by surface plasmon resonance // FEBS Lett. - 2000, - v.481, - pp.281-4123[97] Callaci S., Heyduk E., Heyduk T. Conformational changes of Escherichia coliRNA polymerase s70 factor induced by binding to the core enzyme // J. Biol.Chem. - 1998, - v.273, - pp.32995-3001[98] Van der Spoel D., van Drunen R., Berendsen H.
J. C. GROningen MAchinefor Chemical Simulation. // Department of Biophysical Chemistry, BIOSONResearch Institute, Nijenborgh 4NL-9717 AG, Groningen; 1994.[99]Hess B., Kutzner C., van der Spoel D., Lindahl E.: GROMACS 4: algorithmsfor highly efficient load-balanced, and scalable molecular simulation // J ChemTheory Comput . - 2008, - v.4, - pp.435-447[100]Hornak V., Abel R., Okur A., Strockbine B., Roitberg A., Simmerling C.Comparison of multiple Amber force fields and development of improved proteinbackbone parameters// Proteins, - 2006, - v.65, - pp.712–725.[101] Dubrovin E.V., Koroleva O.N., Khodak Y.A., Kuzmina N. V., YaminskyI.V., Drutsa V. L.AFM study of Escherichia coli RNA polymerase subunitaggregation // Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, - v.8,pp.54-62[102] Koroleva O.N., Dubrovin E.V., Khodak Y.A., Kuzmina N. V., YaminskyI.V., Drutsa V.
L. The Model of Amyloid Aggregation of Escherichia coli RNAPolymerase σ70Subunit Based on AFM Data and In Vitro Assays //CellBiochemistry and Biophysics, - 2013, - v.66 (3), - pp.623-636[103] Lowe P.A., Aebil U., Gross C., Burgess R.R. In Vitro Thermal Inactivationof a Temperaturesensitive Subunit Mutant (rpoD8OO) of Escherichia coli RNA σPolymerase Proceeds by Aggregation // J Biol Chem. - 1981, - v.256, - pp.20102015.[104] Adamcik J., Mezzenga R. Proteins Fibrils from a Polymer PhysicsPerspective // Macromolecules, - 2012, - v.45, - pp.1137−1150.124[105] Jeong J.
S., Ansaloni A., Mezzenga R., Lashuel H. A., Dietler G. NovelMechanistic Insight into the Molecular Basis of Amyloid Polymorphism andSecondary Nucleation during Amyloid Formation // J. Mol. Biol. - 2013, - v. 425,- pp.1765–1781.[106] Marín-Argany M., Rivera-Hernández G., Martí J., Villegas S. An anti-Aβ(amyloid β) single-chain variable fragment prevents amyloid fibril formation andcytotoxicity by withdrawing Aβ oligomers from the amyloid pathway // Biochem.J. - 2011, - v. 437, - pp.25–34.[107] Smith D.
P., Woods L. A., Radford S. E., Ashcroft A. E. Structure andDynamics of Oligomeric Intermediates in β2-Microglobulin Self-Assembly //Biophys. J. - 2011, - v.101(5), - pp.1238–1247[108] Takai E., Uda K., Matsushita S., Shikiya Y., Yamada Y., Shiraki K., Zako T.Maeda M. Cysteine Inhibits Amyloid Fibrillation of Lysozyme and Directs theFormation of Small Worm-Like Aggregates Through Non-Covalent Interactions //Biotechnol. Prog, - 2014, - v.30, - pp.470-478.[109] Debelouchina G. T., Platt G.
W., Bayro M. J., Radford S. E., Griffin R. G.Magic Angle Spinning NMR Analysis of 2-Microglobulin Amyloid Fibrils in TwoDistinct Morphologies // JACS, - 2010, - v.132, - pp.10414–10423.[110] Conway K. A., Harper J.D., Lansbury P.T. Jr. Fibrils Formed in Vitro fromR-Synuclein and Two Mutant Forms Linked to Parkinson’s Disease are TypicalAmyloid // Biochemistry, - 2000, - v.39, - pp.2552-2563.[111]Murakami K.S. X-ray crystal structure of Escherichia coli RNA polymeraseσ70 holoenzyme // J. Biol. Chem. - 2013, - v.288(13), - pp.9126-34[112]Воеводин Вл.В., Жуматий С.А., Соболев С.И., Антонов А.С., БрызгаловП.А., Никитенко Д.А., Стефанов К.С., Воеводин Вад.В. Практикасуперкомпьютера "Ломоносов" // Открытые системы.
- Москва:Издательский дом "Открытые системы", - 2012, - т.7, - с.36-39125[113]Darden T., York D., Pedersen L. Particle mesh Ewald: an N-log(N) methodfor Ewald sums in large systems // J. Chem. Phys.- 1993, - v.98, - pp.10089–10092.[114] Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W., Klein M. L.,Comparison of simple potential functions for simulating liquid water // J.
Chem.Phys. - 1983, - v.79, - pp.926-935.[115] Hess, B., Bekker H., Berendsen H.J.C. LINCS: A Linear Constraint Solverfor Molecular Simulations// J.Comput.Chem. - 1997, - v.18 (12), - pp.1463–1472[116]Fiser A., Sali A. ModLoop: automated modeling of loops in protein structures// Bioinformatics, - 2003, - v.19, - pp.2500-01[117] Humphrey W., Dalke A., Schulten K.VMD - Visual Molecular Dynamics. //Journal of Molecular Graphics, - 1996, - v.14, - pp.33-38[118] Krieger E., Vriend G.YASARA View—molecular graphics for all devices—from smartphones to workstations // Bioinformatics, - 2014, - v.30 (20), - pp.29812982.[119] Frontali, C.; Dore, E.; Ferrauto, A.; Gratton, E.
An Absolute Method for theDetermination of the Persistence Length of Native DNA from ElectronMicrographs // Biopolymers, - 1979, - v.18, - pp.1353−1373.[120] Chen H., Meisburger S.P., Pabit S.A., Sutton J.L., Webb W.W., Pollack L.Ionic strength-dependent persistence lengths of single-stranded RNA and DNA //PNAS, - 2012, - v.109, - pp.799–804.[121] Твердислов В.А., Сидорова А.Э., Яковенко Л.В. От cимметpий – кзаконам эволюции.
I. Хиpальноcть как инcтpумент cтpатификации активныxcpед // Биофизика, - том 57, № 1, - с. 146-154126[122] Weisel J. W., Medved L. The Structure and Function of the αC Domains ofFibrinogen// Annals of the New York Academy of Sciences, Fibrinogen: XVithInternational Fibrinogen Workshop, - 2001, - v. 936, - pp. 312–327,[123] Collet J., Moen J.L., Veklich Y.I., Gorkun O.V., Lord S.T., Montalescot G.,and Weisel J.W. The αC domains of fibrinogen affect the structure of the fibrinclot, its physical properties, and its susceptibility to fibrinolysis // Blood, 2005, v.106 (12), pp.3824-3830[124] Mosesson M.W., Hainfeld J.,Wall J., Haschemeyer R.H. Identification andmassanalysis of human fibrinogen molecules and their domains by scanningtransmission electron microscopy // J.
Mol. Biol. - 1981, - v.153, - pp.695–718.[125]Weisel J.W., Stauffacher C.V., Bullitt E.C. Amodel for fibrinogen: domainsand sequence // Science, - 1985, - v.230, - pp.388–91.[126]VeklichY.I., Gorkun O.V., Medved L.V., Nieuwenhuizen W., Weisel J.W.Carboxyl-terminal portions of the alpha chains of fibrinogen and fibrin // J. Biol.Chem. - 1993, - v.268, - pp.13577–85.[127] Siedlecki C. and Agnihotri A. Spreading of Fibrinogen at Model SurfacesStudied by AFM // Microscopy and Microanalysis, - 2002, - v.8 (Suppl. 02) , pp.260-261.[128]Wasilewska M., Adamczyk Z.Fibrinogen adsorption on mica studied byAFM and in situ streaming potential measurements // Langmuir, - 2011 , - v.27(2),- pp.686-96[129]Averett L.E., Schoenfisch M.H. Atomic force microscope studies offibrinogen adsorption // Analyst, - 2010, - v.135, - pp.1201-1209[130] Сушко А., Завьялова Е., Копылов А., Яминский И.Конформация фибриногена при адсорбции на различные подложки//Наноиндустрия, - 2010, - т.6 - с.26-27127[131] .















