Симплектические многообразия с контактными особенностями (1097875), страница 40
Текст из файла (страница 40)
50 (1986), 6, 1276-1307.[29] ÔîìåíêîÀ.Ò.Òîïîëîãè÷åñêèåèíâàðèàíòûãàìèëüòîíîâûõñèñòåì,èíòåãðèðóåìûõ ïî Ëèóâèëëþ. Ôóíêöèîíàëüíûé àíàëèç è åãî ïðèëîæåíèÿ. 22(1988), 4, 38-51.[30] Ôîìåíêî À.Ò. Ñèìïëåêòè÷åñêàÿ ãåîìåòðèÿ. Ìåòîäû è ïðèëîæåíèÿ. Ì.:"ÌÃÓ", 1988.[31] Ôîìåíêî À.Ò., Ôóêñ Ä.Á. Ãîìîòîïè÷åñêàÿ òîïîëîãèÿ. M.: "Íàóêà", 1989.[32] ÔîìåíêîÀ.Ò.,ÖèøàíãÕ.Òîïîëîãè÷åñêèéèíâàðèàíòèêðèòåðèéýêâèâàëåíòíîñòè èíòåãðèðóåìûõ ãàìèëüòîíîâûõ ñèñòåì ñ äâóìÿ ñòåïåíÿìèñâîáîäû. Èçâ.
ÀÍ ÑÑÑÐ, ñåðèÿ ìàòåì. 54 (1990), 3, 546-572.[33] Õàðëàìîâ Ì.Ï. Òîïîëîãè÷åñêèé àíàëèç êëàññè÷åñêèõ èíòåãðèðóåìûõ ñëó÷àåâ âäèíàìèêå òâåðäîãî òåëà. ÄÀÍ ÑÑÑÐ. 273 (1983), 6, 1322-1325.[34] Õàðëàìîâ Ì.Ï. Áèôóðêàöèè ñîâìåñòíûõ óðîâíåé ïåðâûõ èíòåãðàëîâ â ñëó÷àåÊîâàëåâñêîé. Ïðèêëàäíàÿ ìàòåìàòèêà è ìåõàíèêà. 47 (1983), 6, 922-930.[35] Abdullaev S.S.
The HamiltonJacobi method and Hamiltonian maps. J. Phys. A:Math. Gen. 35 (2002), 28112832.[36] Abraham R., Marsden J.E. Foundations of mechanics. Benjamin/Cummings Publishing Company, London, Amsterdam, 1978.[37] Arnold V.I. First step of local symplectic algebra, Dierential topology, innite-dimensional Lie algebras, and applications. D.B. Fuchs 60-th anniversary collection.Providence, RI: American Mathematical Society. Transl., Ser.
2, Am. Math. Soc.194(44), 1999, 18.[38] Arnold V.I., Gusein-Zade S.M., Varchenko A. N. Singularities of Dierentiable MapsI, Monogr. Math. 82. Birkhauser, Boston, 1985.[39] Balescu R., Vlad M., Spineanu F. Tokamap: A Hamiltonian twist map for magneticeld lines in toroidal geometry.
Phys. Rev., E 58. 951 (1998).198[40] Bhag Singh Guru. Electromagnetic Field Theory Fundamentals. Cambridge University Press, 2004.[41] Bobenko A.I., Reyman A.G., Semenov-Tian-Shansky M.A. The Kowalewski top 99years later: a Lax pair, generalizations and explicit solutions. Comm. Math. Phys.122 (1989), 2, 321-354.[42] Bolsinov A.V. Methods of calculation of the Fomenko-Zieschang invariant. Advancesin Soviet Mathematics. AMS. 6 (1991), 147-183.[43] Bolsinov A.V., Fomenko A.T. Integrable Hamiltonian Systems: Geometry, Topology,Classication. Chapman & Hall/CRC. A CRC Press Company, Boca Raton, London,New York, Washington, D.C.
USA, 2004.[44] Bolsinov A.V., Richter P.H., Fomenko A.T. The method of loop molecules and thetopology of the Kovalevskaya top. Sbornik: Mathematics. 191:2 (2000), 3-42.[45] Boothby W.M. and Wang H.C. On contact manifolds. Annals of Math. (2). 68 (1958),721734.[46] Bott R. Non-degenerate critical manifolds.
Ann. of Math., Ser. 2. 60 (1954), 2,248-261[47] Cary J.R. Lie transform perturbation theory for Hamiltonian systems. Phys. Rep.129 (1981).[48] Darboux G. Lecons sur la theorie generale des surfaces et les applications ge-ometriques du calcul infenitesimal. Paris, Gautier, Villar, 1891.[49] De Groot S., Suttorp L. Foundations of Electrodynamics. Amsterdam, 1972.[50] Domitrz W., Janeczko S., Pasternak-Winiarski Z. Geometry and representations ofthe singular symplectic forms. Geometry and topology of caustics - CAUSTICS 02.Banach Center Publ, 62 (2004), 57-71.[51] Domitrz W., Janeczko S.
Normal forms of symplectic structures on the stratiedspaces. Colloq. Math. 68 (1995), 101-119.[52] Eliashberg Y. A few remarks about symplectic lling. Geom. Topology. 8 (2004),277-293.199[53] Eliashberg Y. Contact 3-manifolds twenty years since J. Martinet's work. Ann. Inst.Fourier. 42 (1992), 1-2, 165-192.[54] Eliashberg Y. On symplectic manifolds with some contact properties. J.
DierentialGeometry. 33 (1991), 1, 233-238.[55] Eliashberg Y. The wave fronts structure theorem and its applications to symplectictopology. Funct. Anal. Appl. 3 (1987), 6572.[56] Etnyre J. On symplectic llings. Algebr. & Geom. Topology.
4 (2004), 73-80.[57] Etnyre J., Honda K. Tight contact structures with no symplectic llings. Invent. Math.148 (2002), 3, 609626.[58] Fomenko A.T. Symplectic Geometry. (Second edition). Gordon and Breach, 1995.[59] Fomenko À.Ò. The theory of invariants of multidimensional integrable Hamiltoniansystems (with arbitrary degrees of freedom). Molecular table of all integrable systemswith two degrees of freedom.
In: Advances in Soviet Mathematics. AMS. 6 (1991),1-36.[60] Geiges H. Constructions of contact manifolds. Math. Proc. Cambridge Philos. Soc.121 (1997), 455464.[61] Giggini P. Strongly llable contact 3-manifolds without Stein llings. Geometry &Topology, 9 (2005), 1677-1687.[62] Golubitsky M., Tischler D.
An example of moduli for singular symplectic forms.Invent. math. 38 (1977), 3, 219-225.[63] Gompf R. A new construction of symplectic manifolds. Annals of Mathematics. 1421995, 527-595.[64] Guillemin V., Sternberg S. Symplectic technique in physics. Cambridge UniversityPress, 1984.[65] Gray J.W. Some global properties of contact structures. Ann. of Math. 2 (1959), 69, 421-450.[66] Gromov M. Pseudo-holomorphic curves in almost complex manifolds.
Invent. Math.82:2 (1985), 307347.200[67] Hamilton W.R. On a general method in dynamics by which the study of the motionsof all free systems of attracting or repelling points is reduced to the search and dierentiation of one central characteristic function. I. Philosophical Transactions. 1834,247-308, Mathematical Papers, v. I, 103-161. II Philosophical Transactions, 1835,95-114, Mathematical Papers, v.
II, 162-211.[68] Hehl F.W., Obukhov Y.N. Foundations of Classical Electrodynamics. Birkhauser,Boston, 2001.[69] Hermann R. Lie algebras and quantum mechanics. W.A. Benjamin, 1970.[70] Janeczko S., Kowalczyk A. On singularities in the degenerated symplectic geometry.Hokkaido Math.
J. 19 (1990), 103-123.[71] Kharlamov M.P. Bifurcation diagrams of the Kowalevski top in two constant elds.Regular & chaotic dynamics. 10 (2005), 4, 381-398.[72] Kharlamov M.P., Zotev D.B. Non-degenerate energy surfaces of rigid body in twoconstant elds. Regular & chaotic dynamics. 10 (2005), 1, 15-20.[73] Kovalev A.M.
Invariant and integral manifolds of dynamical systems and the problemof integration of the Euler-Poisson equations. Regular & chaotic dynamics. 9 (2004), 1, 59-72.[74] Liouville J. Note sur l'integration des equations dierentielles de la dinamique, pre-sentee au bureau des longitudes le 29 juin 185. Journal de Mathematiques pures etappliquees. 20 (1855), 137-138.[75] Lisca P. On symplectic llings of 3-manifolds. Tr. J. Mathematics. 23 (1999), 151159.[76] Martinet J. Sur les singularities des formes dierentielles. Ann.
Inst. Fourier. 20(1970), 1, 95-178.[77] Martinet J. Formes de contact sur les variretres de dimension 3. in: Proc. Liverpool Singularities Sympos. II, Lecture Notes in Math., 209. Springer, Berlin, 1971,142163.[78] Mc Du D. Symplectic manifolds with contact type boundaries. Invent. Math. 103(1991), 3, 651-671.201[79] Moser J. On the volume elements on manifolds. Trans.
Amer. Math. Soc. 120 (1965), 2, 280-296.[80] Nono T., Mimura F. Poisson bracket under mappings. Hokkaido Math. Journal.(1972), 1, 232-241.[81] Oshemkov A.A. Fomenko invariants for the main integrable cases of the rigid bodymotion equations. Advances in Soviet Math. AMS. 6 (1991), 67-146.
pp. 67-146.[82] Pnevmatikos S. Structures hamiltoniennes en presence de contraintes. C. R. Acad.Sci., Paris, Ser. A-B 289. (1979), 16, A799-A802.[83] Pnevmatikos S. Singularites en geometrie symplectique.Symplectic geometry(Toulouse, 1981). Res. Notes in Math., 80, Pitman, Boston, Mass., London, 1983.[84] Pnevmatikos S. Structures symplectiques singulieres generiques. Ann. Inst.
Fourier.34 (1984), 3, 201-218.[85] Pnevmatikos S., Pliakis D. Gauge elds with generic singularities. Math. Phys. Anal.Geom. 3 (2000), 4, 305-321.[86] Poisson S.D. Traite de mecanique. Paris, 1833.[87] Roussarie R. Modeles locaux de champs et de formes. Asterisque. 30 (1975), 99.[88] Thurston W.P., Winkelnkemper H.E.
On the existence of contact forms. Proc. Amer.Math. Soc. 52 (1975), 345347.[89] Tien Zung Nguen. Decomposition of nondegenerate singularities of integrable Hamil-tonian systems. Letters in Mathematical Physics. 33 (1995), 187-193.[90] Vaisman I. Lectures on the Geometry of Poisson Manifolds. Progress in Math., v.118. Basel: Birkhauser, 1994.[91] Warnic K.F., Selfridge R., Arnold D.V. Teaching electromagnetic eld theory usingdierential forms. 2005.[92] Weinstein A. Lectures on symplectic manifolds. in C.B.M.S.
Conf. Series., Am. Math.Soc., Providence, R.I. (1977), 29.[93] Weinstein A. The local structure of Poisson manifolds. J. Di. Geom. 18 (1983),523557.202[94] Weinstein A. Contact surgery and symplectic handlebodies. Hokkaido Math. Journal.20 (1991), 2, 241-251.[95] Zotev D.B. Fomenko-Zieschang Invariant in the Bogoyavlenskyi Integrable Case.Regular & chaotic dynamics.
5 (2000), 4, 437-458.[96] Zotev D.B. On a partial integral which can be derived from Poisson Matrix. Regular& chaotic dynamics. 12 (2007), 1, 81-85.203μλD2AμμμμС2N 02λÐèñ. 4:1 Àòîìû A è C2 .204222μμBN2μλμμN2A*λÐèñ. 23: Àòîìû A∗ è B .205221BA*Ðèñ. 35: Áèôóðêàöèè A∗ è B206223(a)(b)n =0r=e= 18AAr=0e= 1BA8A(d)AA8r=0e= 1r=e= 0-1BABr = =-1er=0e= 1r = -1e=88Br= 1e=88r=e= 01B0r= 1e=r=e= 01r=e= 1r=0e= 1n=00r= 1e=n=0BAAB(c)BAr= =1er=e= 10r = -1e=Ar=e= 1r=e= 010r= 1e=n=0B0n=BAAr=0e= 1r=0e= 18Ar=e=-1AAÐèñ. 6:4 Ìå÷åíûå ìîëåêóëû W ∗ (Q3h ) â ñëó÷àå Áîãîÿâëåíñêîãî.207224Qh3(h > h3 )f = constA∞fh2( H × F )(Qh3 )( H × F )(Θ)h1h3Ðèñ.
57: Áèôóðêàöèîííàÿ äèàãðàììà Σ â ñëó÷àå Áîãîÿâëåíñêîãî.208225( H × F )(Qh3 )hρCDh1 < h < h 2LBGSAQERyFKρCDLNBh 2 < h < h3EGKAyFρCBDh > h3EGAFÐèñ. 68: Ïðîåêöèè ïîäìíîãîîáðàçèé Q3h íà ïëîñêîñòü R2 (y, ρ).209226yA⎛0 1⎞⎜⎜⎟⎟⎝1 0⎠F −1 (0)B⎛ 0 ± 1⎞⎟⎟⎜⎜⎝ ±1 0 ⎠⎛ 0 ± 1⎞⎟⎟⎜⎜⎝ ±1 0 ⎠B∞B∞∞∞AA⎛0 1⎞⎜⎜⎟⎟⎝1 0⎠F −1 ( f )⎛0 1⎞⎜⎜ 1 0 ⎟⎟⎝⎠BB⎛ ±1 0 ⎞⎜⎜⎟⎟⎝ 0 m 1⎠A2S 00× S1∞AS 2 × S1∞Ðèñ. 79: Ñëîåíèå íóëåâîãî óðîâíÿ F .210227⎛ ±1 0 ⎞⎜⎜⎟⎟⎝ 0 m 1⎠f1d+c+1~p pqf2b+m+a+n+j+g+e+2k+i+l+31l−e−g−j−a−b−4i−k−n−m−f32f221c−d−f1Ðèñ.
10:8 Ñêëåèâàþùèå èçîòîïèè ïðè h1 < h < h3 .211228f3f2M3 > 0M3 < 0n+g+n+g+i+3g−i+23i−g−n−i−n−f2Рис. 2.10Ðèñ. 11:9 Ñêëåèâàþùèå èçîòîïèè ïðè h > h3 .212229N1D12 nN2D12 nD22 nD22 nS 2 n −1 × [−1;−1 / 2]N2N1Θ ≅ S 2 n −1D12 nD12 nS 2 n −1 × [−1 / 2;0)S 2 n −1 × (0;1 / 2]D22 nS 2 n −1 × [1 / 2;1]F0 ( S 2 n −1 × {0})D 2nÐèñ.
12:10 Êîíòàêòíî-ñâÿçíàÿ ñóììà.213230D22 nrctr = c(t − t ' )r = r (t ' )r0r∗t'tt∗OrE2rE1Ptrr1αtrr2q1r rr1 − r2t−rvÐèñ. 13:11 Ïîëå îò äâóõ çàðÿäîâ.214231q2r2cÐèñ. 14:12 Ïîëÿ òî÷å÷íûõ ìàãíèòîâ è çàðÿäà.215232rm•rmrmrHrErHrHrER = ctrErHrErHrHÐèñ. 15:13 Ñîëåíîèäàëüíîå ïîëå ñî ñôåðè÷åñêèì ôðîíòîì.216233Hρ =0EpфронтEρ =0HpфронтРис. 141: Возможные конфигурации поля вблизи контактной точки217p..