Пучки без кручения на многообразиях и интегрируемые системы (1097861), страница 50
Текст из файла (страница 50)
Milne, J., Étale cohomology, Princeton University Press, Prinston, 198093. A.E. Mironov, A ring of commuting differential operators of rank 2 corresponding to a curveof genus 2, Sbornik: Math. 195:5 (2004), 711–722.94. A.E. Mironov, On commuting differential operators of rank 2, Siberian Electronic Math.Reports 6 (2009), 533–536.95. A.E.
Mironov, Commuting rank 2 differential operators corresponding to a curve of genus2, Functional Anal. Appl. 39:3 (2005), 240—243.96. A. Mironov, Self–adjoint commuting ordinary differential operators, Invent. Math. 197(2014), no. 2, 417–431.97. A.E. Mironov, Periodic and rapid decay rank two self-adjoint commuting differentialoperators., Amer. Math. Soc. Transl. Ser. 2, V.
234, 2014, 309–322.98. Mironov A.E., Self-adjoint commuting differential operators and commutative subalgebrasof the Weyl algebra, e-print arXiv: math-ph/1107.335699. A.E. Mironov, B.T. Saparbaeva, On eigenfunctions of one-dimensional Schrödingeroperators with polynomial potentials, Doklady Math. 2015 (arxiv: . arXiv:1412.2614).100. A.
Mironov, A. Zheglov, Commuting ordinary differential operators with polynomialcoefficients and automorphisms of the first Weyl algebra, Int. Math. Res. Notices,doi:10.1093/imrn/rnv218.101. O.I. Mokhov, Commuting differential operators of rank 3 and nonlinear differentialequations, Mathematics of the USSR-Izvestiya 35:3 (1990), 629–655.102.
O.I. Mokhov, On commutative subalgebras of the Weyl algebra related to commutingoperators of arbitrary rank and genus, Mathematical Notes, 94:2 (2013), 298–300.103. O. Mokhov, Commuting ordinary differential operators of arbitrary genus andarbitrary rank with polynomial coefficients, Topology, geometry, integrable systems, andmathematical physics, 323–336, Amer. Math. Soc. Transl. Ser. 2, 234, Amer.
Math. Soc.(2014).104. J. A. Morrow, Minimal normal compactifications of C2 , Complex analysis, Rice Univ.Studies, 59, 1, 1972, 97–112.105. Mulase M. Cohomological structure in soliton equations and Jacobian varieties, J. Diff.Geom., 1984, V. 19, P. 403-430.106. Mulase M., Solvability of the super KP equation and a generalization of the Birkhoffdecomposition, Inv. Math., Vol.
92, Fasc.1, 1988, 1-46199107. Mulase M., Category of vector bundles on algebraic curves and infinite dimensionalGrassmanians, Int. J. Math., 1 (1990), 293-342.108. Mulase M., Algebraic theory of the KP equations, Perspectives in Mathematical Physics,R.Penner and S.Yau, Editors, (1994), 151-218.109. Mumford D., An algebro-geometric constructions of commuting operators and of solutionsto the Toda lattice equations, Korteweg-de Vries equations and related non-linear equations,In Proc. Internat. Symp.
on Alg. Geom., Kyoto 1977, Kinokuniya Publ. (1978) 115-153.110. Mumford D., Tata lectures on Theta II, Birkhäuser, Boston, 1984111. Mumford D., The red book of varieties and schemes, Springer-Verlag, Berlin, Heidelberg,1999112. A. Nakayashiki, Structure of Baker – Akhiezer Modules of Principally Polarized Abelianvarieties, Commuting Partial Differential Operators and Associated Integrable Systems,Duke Math. J., 62, 2, 1991, 315–358113. Nakayashiki A., Commuting partial differential operators and vector bundles over Abelianvarieties, Amer.
J. Math. 116, (1994), 65-100.114. Narasimhan R., A note on Stein spaces and their normalisations, Annali della ScuolaNormale Superiore di Pisa, Classe di Scienze 3 série, tome 16, n. 4 (1962), p. 327-333.115. M. Olshanetsky, A. Perelomov, Quantum integrable systems related to Lie algebras, Phys.Rep., 94, 1983, 313–404.116. V. Oganesyan, Commuting differential operators of rank 2 with polynomial coefficients,Func. Anal.
Appl., 50:1 (2016), 54-61.117. Parshin A.N., Vector Bundles and Arithmetical Groups I., Proc. Steklov Math. Institute,208 (1995), 212-233; e-print alg-geom/9605001118. Parshin A. N., Integrable systems and local fields, Commun. Algebra, 29 (2001), no. 9,4157-4181.119. Plaza Martin, F.
J., Arithmetic infinite Grassmannians and the induced central extensions,Collect. Math. 61, No. 1, 107-129 (2010).120. Previato E., Multivariable Burchnall-Chaundy theory, Philosophical Transactions of theRoyal Society A: Mathematical, Physical and Engineering Sciences, in "30 years of finitegap integration"compiled by V. B.
Kuznetsov and E. K. Sklyanin, (2008) 366, 1155-1177.121. E. Previato, Seventy years of spectral curves: 1923–1993, Integrable systems and quantumgroups 419–481, Lecture Notes in Math. 1620, Springer (1996).122. E. Previato, G. Wilson, Differential operators and rank 2 bundles over elliptic curves,Compositio Math.
81 (1992), 107–119.123. Min Ho Lee, Tau functions associated to pseudodifferential operators of several variables,J. Nonlinear Math. Phys. 9 (2002), no. 4, 517-529.124. Min Ho Lee, Tau functions and residues, J. Math. Phys. 44 (2003), no. 11, 5401-5409125. Min Ho Lee and Emma Previato, Grassmanians of higher local fields and multivariabletau functions, Contemp. Math., vol. 398, 2006200126. I. Quandt, On a relative version of the Krichever correspondence, BayreutherMathematische Schriften 52, 1–74 (1997).127.
C. J. Rego, The compactified Jacobian, Ann.Scient. Ec. Norm. Sup., 13, 1980, 211–223.128. Rothstein M., Connections on the Total Picard Sheaf and the KP Hierarchy, ActaApplicandae Mathematicae, 42: 297-308, 1996129. Rothstein M., Sheaves with connection on abelian varieties, Duke Math. Journal, 84 (1996),565-598130. Polishchuk A., Rothstein M., Fourier Transform for D-algebras, I. Duke Math.
J., 109, 1(2001), 123-146131. Rothstein M., Dynamics of the Krichever construction in several variables, J. ReineAngew. Math. 572 (2004) 111-138132. Sato M., Soliton equations and universal Grassmann manifold, Kokyuroku, Res. Inst.Math. Sci., Kyoto Univ. 439 (1981) 30-46.133. Sato M., Sato Ya. Soliton equations as dynamical systems on infnite dimensionalGrassmann manifold, Lect. Notes in Num.
Appl.Anal., 1982, V. 5., P. 259-271.134. Sato M., Noumi M., Soliton equations and universla Grassmann manifold (in Japanese),Sophia Univ. Lec. Notes Ser. in Math. 18 (1984).135. Schur I., Über vertauschbare lineare Differentialausdrc̈ke, Sitzungsber. der Berliner Math.Gesel. 4 (1905) 2-8.136. Segal G., Wilson G., Loop Groups and Equations of KdV Type, Publ. Math.
IHES, n. 61,1985, pp. 5-65.137. Serre J.-P., Faisceaux algebriques coherents, The Annals of Mathematics, 2nd Ser., Vol.61, No.2, (1955), 197-278.138. Serre J.-P., Groupes algébriques et corps de classes, Hermann, Paris, 1959.139. Shiota T., Characterization of Jacobian varieties in terms of soliton equations, Invent.Math., 1986, V.83, 333-382140. Sokolov, V. V.; Algebraic quantum Hamiltonians on the plane. Teoret. Mat.
Fiz. 184(2015), no. 1, 57–70;141. I. Taimanov, Singular spectral curves in finite–gap integration, Uspekhi Mat. Nauk 66(2011), no. 1 (397), 111–150.142. Takasaki K., Geometry of universal Grassman manifold from algebraic point of view,Reviews in Math. Phys., 1989, v. 1, no.
1, 1-46.143. Alvarez Vazquez, A.; Munoz Porras, J.M.; Plaza Martin, F.J., The algebraic formalismof soliton equations over arbitrary base fields, Rodriguez, Rubi (ed.) et al., Workshopon abelian varieties and theta functions. Morelia, Mexico, July 8-27, 1996. Proceedings.Mexico: Sociedad Matematica Mexicana. Aportaciones Mat., Investig. 13, 3-40 (1998).144. Verdier J.-L., Equations differentielles algébriques, Séminaire de lÉcole Normale Supérieure1979-82, Birkhäuser (1983) 215-236.201145.
Wallenberg G., Über die Vertauschbarkeit homogener linearer Differentialausdrücke,Archiv der Math. u. Phys., Drittle Reihe 4 (1903) 252-268.146. G. Wilson, Algebraic curves and soliton equations, Geometry today, 303–329,Progr. Math. 60, Birkhäuser (1985).147. Wilson G. Bispectral commutative ordinary differential operators, J. Reine Angew. Math.442 (1993), 177–204.148. E. Witten, Two-dimensional Gravity and intersection theory on moduli spaces, Surveys inDifferential Geometry 1, 1991, 243-310149.
Zariski O., The theorem of Riemann-Roch for high multiples of an effective divisor on analgebraic surface, Annals of Math. 76 (1962), 560-615150. Zariski O., Samuel P., Commutative algebra, Springer, 1975.151. Zheglov A.B., Two dimensional KP systems and their solvability, Preprints of HumboldtUniversity. — Vol. 5. — Humboldt University of Berlin, Berlin, 2005. — P.
1–42; e-printarXiv:math-ph/0503067v2.152. D. Zuo, Commuting differential operators of rank 3 associated to a curve of genus 2,SIGMA, 8 (2012), 044..