Диссертация (1097736), страница 34
Текст из файла (страница 34)
Íàõîæäåíèå äâóõ÷àñòîòíîé êîððåëÿöèîííîé ôóíêöèè ïîëÿ < Eω1 Eω∗2 > , ò.å ñðåäíåãî âòîðîãî ìîìåíòà ïîëÿ,íåîáõîäèìîãî äëÿ âû÷èñëåíèÿ ñðåäíåé èíòåíñèâíîñòè îòðàæåííîãî èìïóëüñà,ñâîäèòñÿ ê âû÷èñëåíèþ õàðàêòåðèñòè÷åñêîé ôóíêöèè ñëó÷àéíûõ âûñîò øåðîõîâàòîñòè, â ñëó÷àå ìíîãîìåðíîãî íîðìàëüíîãî (ãàóññîâîãî) çàêîíà ðàñïðåäåëåíèÿâàðèàöèè âûñîò ðàâíîé [270]< exp(2iκ1 h(x1 , y1 ) − (2iκ2 h(x2 , y2 )) >=226(4.71)exp(−ik12 < h2 > −2k22 < h2 > + 4k1 k2 < h2 > ρ(x1 − x2 , y1 − y2 )) ,ãäå ρ(x1 − x2 , y1 − y2 ) - êîððåëÿöèîííàÿ ôóíêöèÿ âûñîòû øåðîõîâàòîñòè, çàâèñÿùàÿ îò êîîðäèíàò íà ïîâåðõíîñòè.
Ñ ó÷åòîì (4.71) äâóõ÷àñòîòíóþ êîððåëÿöèîííóþ ôóíêöèþ ýëåêòðè÷åñêîãî ïîëÿ â òî÷êå ïðèåìà ìîæíî çàïèñàòü ââèäåΓ(ω1 , ω2 ) ≡<Eω1 Eω∗2e2i(k1 −k2 )z k1 k2>=zπL1 L2 4π 2 z 2∫eS dx1 dy1 dx2 dy2 dl1 dl2(4.72)ãäå ïîêàçàòåëü ýêñïîíåíòû ïîä çíàêîì èíòåãðàëàS=ik1ik1ik1ik1(x1 − x2 )2 +(y1 − y2 )2 +(x3 − x4 )2 +(y3 − y4 )2 −2z2z2z2z(4.73)(l1 − l01 )2(l2 − l02 )2−−− 2(k12 + k12 ) < h2 > +βρ(x1 − x2 , y1 − y2 ) ,22L1L2ãäå β = 4k1 k2 < h2 >.  íàøåì ñëó÷àå äëÿ âûáðàííîé ìîäåëè êîððåëÿöèîííîéôóíêöèè ðåëüåôà (4.63) ìîæíî ðàçëîæèòü ýêñïîíåíòó â (4.72) â ðÿä Òåéëîðàïî ρ(x1 − x2 , y1 − y2 ) è ïîëó÷èòü âûðàæåíèå äëÿ äâóõ÷àñòîòíîé êîððåëÿöèîííîéôóíêöèè ïîëÿ< Eω1 Eω∗2∑ e2i(k1 −k2 )z k1 k2 ∫ β n1 +n2 eSn1 ,n2dx1 dy1 dx2 dy2 dl1 dl2 ,>=2z2zπLL4πn!n!1212n ,n1(4.74)2ãäå ïîêàçàòåëü ýêñïîíåíòûik1ik1ik1ik1(l1 − l01 )22222Sn1 ,n2 =(x1 − x2 ) +(y1 − y2 ) +(x3 − x4 ) +(y3 − y4 ) −2z2z2z2zL21(4.75)′ 22′ 2n1 (x − x )(l2 − l02 )n2 (y − y )222−−−2(k+k)<h>+βexp(−−).11L22σx2σx2 ñëó÷àå ñòàòèñòè÷åñêè îäíîðîäíîé øåðîõîâàòîñòè íà âñåé ïîâåðõíîñòè ìîæíîïîëîæèòü l01 − l02 = l0 .
Äëÿ ïðîñòîòû îãðàíè÷èìñÿ àíàëèçîì ñëó÷àÿ, êîãäà òðàåêòîðèÿ äâèæåíèÿ êîñìè÷åñêîãî àïïàðàòà íàïðàâëåíà ïîïåðåê ïåðèîäè÷åñêîãîðåëüåôà, ò.å. ïàðàëëåëüíî ãðåáíÿì äþí (ϕ = 0), à ïðàêòè÷åñêè èñïîëüçóþòñÿçíà÷åíèÿ ïàðàìåòðîâ ñèíòåçà àïåðòóðû L1 = L2 = L, l0 = 0.  ýòîì ñëó÷àå ïåðåìåííûå â èíòåãðàëàõ (4.72,4.74) ðàçäåëÿþòñÿ íà ãðóïïû x è y - ïåðåìåííûõ,ñîîòâåòñòâåííî.
Íàõîæäåíèå êîððåëÿöèîííîé ôóíêöèè ïîëÿ (4.74) ñâîäèòñÿ ê227âû÷èñëåíèþ ìíîãîìåðíûõ èíòåãðàëîâ îò ãàóññîâûõ ôóíêöèé âèäà (4.10), ãäåýëåìåíòû ìàòðèö âû÷èñëÿþòñÿ ïî ôîðìóëå}1 ∂ 2S,Aij = −2 ∂xi ∂xj x→0{}∂Bi =(S + Aij xi xj ) .∂xix→0{(4.76)(4.77)Äëÿ ãðóïïû x-ïåðåìåííûõ, ñîîòâåòñòâóþùèõ íàïðàâëåíèþ äâèæåíèÿ êîñìè÷åñêîãî àïïàðàòà, ïî êîòîðîìó ïðîèçâîäèòñÿ ñèíòåç àïåðòóðû, ìàòðèöà Aij èñòîëáåö Bi ñîîòâåòñòâåííî ðàâíû1L2ik1z−ik1zik1zn1 +n2σ20002− n1σ+n2− ikz2− ikz1Aij = ik2100z + L2ik2 σ 2 +n1 z+n2 z20− n1σ+n− ikz22zσ 2{}2x(0)2x(0)Bi =, i(n1 − n2 )κ,, −i(n1 − n2 )κL2L2,(4.78),(4.79)ãäå κ = 2π/d - ïàðàìåòð ìàñøòàáà ïåðèîäè÷åñêîé ñòðóêòóðû ðåëüåôà.
Îïðåäåëèòåëü ìàòðèöû Aij è êâàäðàòè÷íàÿ ôîðìà B T A−1ij B ñîîòâåòñòâåííî ðàâíû( ())ik2 (n1 + n2 )z + k1 k2 2(n1 + n2 )L2 + σ 2 − i(n1 + n2 )z,(4.80)det Aij =L4 z 2 σ 2() 2 222(n−n)2kkL−ikz+ikzκσ121212B T A−1B=−. (4.81)ijik2 (n1 + n2 )z + k1 (k2 (2(n1 + n2 )L2 + σ 2 ) − i(n1 + n2 )z)Ïîäñòàâëÿÿ ïîëó÷åííûå âûðàæåíèÿ (4.81) è (4.80) â (4.10), ïîëó÷èì èñêîìîåçíà÷åíèå èíòåãðàëà ïî ãðóïïå x-ïåðåìåííûõ.  ðàññìàòðèâàåìîì ñëó÷àå (ïîëåò êîñìè÷åñêîãî àïïàðàòà ïàðàëëåëüíî ïåðèîäè÷åñêîé ñòðóêòóðå) â èíòåãðàëåïî x-ïåðåìåííûì ñëåäóåò ïîëîæèòü d → ∞, òî åñòü κ = 0. Ñîîòâåòñòâåííî äëÿâû÷èñëåíèÿ èíòåãðàëîâ ïî ãðóïïå y -ïåðåìåííûõ, ñîîòâåòñòâóþùèõ íàïðàâëåíèþ, ïåðïåíäèêóëÿðíîìó òðàåêòîðèè äâèæåíèÿ êîñìè÷åñêîãî àïïàðàòà, â êîòîðîì ñèíòåç àïåðòóðû íå ïðîèçâîäèòñÿ, äîñòàòî÷íî â óêàçàííûõ âûðàæåíèÿõïåðåéòè ê ïðåäåëó L → 0.2284.14 ×èñëåííîå ìîäåëèðîâàíèå è îáñóæäåíèå ðåçóëüòàòîâ.Äëÿ èçîáðàæåíèÿ R0900626 [302], ôðàãìåíò êîòîðîãî ïðåäñòàâëåí íà ðèñ.
4.21,áûë âû÷èñëåí ïðîñòðàíñòâåííûé ñïåêòð ÿðêîñòè èçîáðàæåíèÿ, ïîêàçàííûé íàðèñ. 4.22. Ïî ðåçóëüòàòàì âû÷èñëåíèÿ áûëè îöåíåíû õàðàêòåðíûé ïåðèîä d ≈100 ì è ïàðàìåòðû øèðèíû σx ≈ 1000 ì , σy ≈ 1000 ì ìîäåëüíîãî ñïåêòðà(4.64) è êîððåëÿöèîííîé ôóíêöèè (4.63). Ïîëó÷åííûå çíà÷åíèÿ èñïîëüçîâàëèñüäëÿ ìîäåëèðîâàíèÿ îòðàæåíèÿ ðàäèîëîêàöèîííûõ ñèãíàëîâ îò ðåëüåôíîé ïîâåðõíîñòè ïëàíåòû.
Íà ðèñ. 4.26 ïðèâåäåí ïðèìåð ðåçóëüòàòîâ ÷èñëåííîãî ìîäåëèðîâàíèÿ ÑØÏ ðàäèîëîêàöèîííûõ èìïóëüñîâ, îòðàæåííûõ îò ïîâåðõíîñòèïëàíåòû. Äëÿ ÷àñòîòíîãî äèàïàçîíà ðàäèîëîêàòîðà SHARAD 15-25 ÌÃö [254]ðåçóëüòàòû ïðåäñòàâëåíû äëÿ âûñîòû, áëèçêîé ê ìèíèìàëüíîé ðàáî÷åé (250êì). Ïîñêîëüêó ôóíêöèÿ êîððåëÿöèè âûñîò ïî ïðèâåäåííîé ìåòîäèêå îïðåäåëÿåòñÿ ñ òî÷íîñòüþ äî ïðîèçâîëüíîãî ìíîæèòåëÿ, íà êàæäîì ðèñóíêå ïðèâåäåíîñåìåéñòâî êðèâûõ, ñîîòâåòñòâóþùèõ ðàçëè÷íûì çíà÷åíèÿì ñðåäíåãî êâàäðàòà âàðèàöèè âûñîòû ðåëüåôà (óêàçàíû öèôðàìè ïðè êàæäîé êðèâîé).
Õîðîøî çàìåòåí çàïàçäûâàþùèé èìïóëüñ ðàññåÿííîãî èçëó÷åíèÿ, ñîîòâåòñòâóþùèéáðýããîâñêîìó îòðàæåíèþ îò ïåðèîäè÷åñêîãî ðåëüåôà. Ñ óâåëè÷åíèåì ñðåäíåãîêâàäðàòà âàðèàöèè âûñîòû ðåëüåôà, ò.å. ñ óâåëè÷åíèåì èíòåíñèâíîñòè áðýããîâñêîãî ðàññåÿíèÿ íà ïåðèîäè÷åñêîé ñòðóêòóðå, íàáëþäàåòñÿ ðîñò ýíåðãèè çàïàçäûâàþùåãî èìïóëüñà è îñëàáëåíèå ôðîíòàëüíîãî îòðàæåíèÿ îò ïîâåðõíîñòè.Ïðàêòè÷åñêè â ðåàëüíîì ýêñïåðèìåíòå âîçìîæíà ìàñêèðîâêà ãëóáèííûõ îòðàæåíèé çàïàçäûâàþùèì èìïóëüñîì. Ýòî äîëæíî ó÷èòûâàòüñÿ ïðè ñîâìåñòíîìàíàëèçå ðàäèîëîêàöèîííûõ ñèãíàëîâ è èçîáðàæåíèé ïîâåðõíîñòè, äîñòóïíûõâ êà÷åñòâå àïðèîðíîé èíôîðìàöèè èëè ïîëó÷àåìûõ ïðè ïîìîùè êîíòåêñòíîéêàìåðû [298] íà êîñìè÷åñêîì àïïàðàòå.229Ðèñ.
4.21: Ôðàãìåíòû èçîáðàæåíèé îðáèòàëüíîé êàìåðû MOC.230R0900626x-0.1-0.100Κy0.10.1ΚxÐèñ. 4.22: Îáðàáîòêà èçîáðàæåíèÿ MOC R0900626. Ïðîñòðàíñòâåííûé ñïåêòðâàðèàöèé ÿðêîñòè èçîáðàæåíèÿ.SpekxkyÐèñ. 4.23: Ìîäåëüíûå ïðîñòðàíñòâåííûå ñïåêòðû âàðèàöèè âûñîòû êâàçèïåðèîäè÷åñêîãî ðåëüåôà ïîâåðõíîñòè.231<hHx,yLh<x+Dx,y+DyL>DyDxÐèñ. 4.24: Ìîäåëüíûå êîððåëÿöèîííûå ôóíêöèè âàðèàöèè âûñîòû êâàçèïåðèîäè÷åñêîãî ðåëüåôà ïîâåðõíîñòè.232Космический аппарат2LzДневная поверхностьÐèñ. 4.25: Ñõåìàòè÷åñêîå èçîáðàæåíèå ýêñïåðèìåíòà ïî ðàäèîëîêàöèîííîìóçîíäèðîâàíèþ.233дБ250 km_20000 _1000 _1000 _104 _100 _40t, мкс0255075100125102030405.10.3.502.60701.Ðèñ.
4.26: Ìîäåëèðîâàíèå îòðàæåííûõ ñèãíàëîâ. Äèàïàçîí SHARAD (15-25ÌÃö), âûñîòà êîñìè÷åñêîãî àïïàðàòà 250 êì.4.15 ×èñëåííîå ìîäåëèðîâàíèå ðàäèîëîêàöèè ðåëüåôíîãî ãëóáèííîãî ãîðèçîíòà è îáñóæäåíèå ðåçóëüòàòîâ.Ïî ôîðìóëàì ðàçäåëà 4.1 ïðîâåäåíî ÷èñëåííîå ìîäåëèðîâàíèå ãëóáèííîãî ðàäèîçîíäèðîâàíèÿ ìàðñèàíñêèõ ïîëÿðíûõ ëåäÿíûõ ùèòîâ ñ ó÷åòîì ðåëüåôà ãðàíèö (ðèñ. 4.27).
Ýëåêòðè÷åñêèå è ãåîìåòðè÷åñêèå ïàðàìåòðû ìîäåëè áûëè âûáðàíû íà îñíîâå ñîâîêóïíîñòè íàáëþäàòåëüíûõ äàííûõ, ðàíåå îïóáëèêîâàííûõâ ëèòåðàòóðå.Âûáðàííàÿ òîëùèíà ëåäÿíîãî ñëîÿ 5 êì ñîîòâåòñòâóåò ìàêñèìàëüíîé ðàñ÷åòíîé ãëóáèíå çîíäèðîâàíèÿ ãëóáèííîãî ðàäèîëîêàòîðà MARSIS [253], áëèçêîé ê îöåíêàì ðåàëüíîé òîëùèíû ìàðñèàíñêèõ ïîëÿðíûõ ëüäîâ, â äàëüíåéøåìóòî÷íåííûì ïî ðåçóëüòàòàì ðàäèîëîêàöèè [260]. Êîýôôèöèåíò ïðåëîìëåíèÿn = 1.77 âûáðàí áëèçêèì ê çíà÷åíèÿì, õàðàêòåðíûì äëÿ ÷èñòîãî ëüäà. Íåñóùåñòâåííîå â äàííîé çàäà÷å ìàëîå ïîãëîùåíèå íå ó÷èòûâàëîñü. Äèýëåêòðè÷åñêàÿ234ïðîíèöàåìîñòü ïîäëîæêè ε = 15 âûáðàíà áëèçêîé ê çíà÷åíèÿì, òèïè÷íûì äëÿêîðåííûõ ïîðîä çåìíîé êîðû [237].Êîððåëÿöèîííûå ôóíêöèè âûñîòû ðåëüåôà îáåèõ ïîâåðõíîñòåé ñ÷èòàþòñÿãàóññîâûìè, èçîòðîïíûìè < h(x, y)h(x′ y ′ ) >=< h2 > exp(−(x − x′ )2 /σx2 −(y − y ′ )2 /σy2 ).
Ìàñøòàáû êîððåëÿöèè ðåëüåôà σx = σy = σ = 1000 ì , òèïè÷íûå äëÿ ñîîòâåòñòâóþùèõ ãåîëîãè÷åñêèõ ïîäðàçäåëåíèé, áûëè âûáðàíû âñîîòâåòñòâèè ñ ðåçóëüòàòàìè àíàëèçà äàííûõ ëàçåðíîãî àëüòèìåòðà MOLA [206]è ñíèìêîâ ïîâåðõíîñòè âûñîêîãî ðàçðåøåíèÿ MOC [226]. Ñðåäíåêâàäðàòè÷íûåâûñîòû ðåëüåôà äíåâíîé ïîâåðõíîñòè hs è ïîäîøâû ëåäÿíîãî ùèòà hss âàðüèðîâàëèñü. Ìîäåëèðîâàíèå ïðîâîäèëîñü äëÿ òðåòüåãî ðàáî÷åãî äèàïàçîíà èíñòðóìåíòà MARSIS (3.5-4.5 ÌÃö). Òðàåêòîðèÿ ïîëåòà êîñìè÷åñêîãî àïïàðàòà ãîðèçîíòàëüíàÿ, âûñîòà òðàåêòîðèè 250 êì ñîîòâåòñòâóåò ìèíèìàëüíîé ðàáî÷åéâûñîòå èíñòðóìåíòà MARSIS [253]. Äëèíà ñèíòåçèðîâàííîé àïåðòóðû ñîîòâåòñòâóåò ïðèíÿòîé äëÿ óêàçàííîãî äèàïàçîíà â ðåàëüíîì ýêñïåðèìåíòå, àïåðòóðíàÿ ôóíêöèÿ ïðèáëèæåííî çàìåíåíà ãàóññîâñêîé [274, 272, 273, 226].Ðåçóëüòàòû ìîäåëèðîâàíèÿ ïðèâåäåíû íà ðèñ. 4.28,4.29. Íà ðèñ.
4.28 ïîêàçàíû òèïè÷íûå ïðîôèëè ñèãíàëîâ, âû÷èñëåííûå äëÿ ñôîðìóëèðîâàííîé ìîäåëè. Íà ðèñ. 4.29 ïîêàçàíû ìàêñèìàëüíûå àìïëèòóäû îòðàæåíèÿ îò ãëóáèííîãî ãîðèçîíòà â çàâèñèìîñòè îò ñðåäíåêâàäðàòè÷íûõ âûñîò ðåëüåôà ïîâåðõíîñòè è ïîäïîâåðõíîñòè.  ñîîòâåòñòâèè ñ ïîëó÷åííûìè ðåçóëüòàòàìè, âëèÿíèåäâóêðàòíîãî ïðîõîæäåíèÿ ÷åðåç ðåëüåôíóþ äíåâíóþ ïîâåðõíîñòü íà õàðàêòåðèñòèêè ðàäèîëîêàöèîííîãî èìïóëüñà îòíîñèòåëüíî íåâåëèêî ïî ñðàâíåíèþ ñîòðàæåíèåì îò ðåëüåôíîãî ãëóáèííîãî ãîðèçîíòà.
Òåì ñàìûì, ïî ðåçóëüòàòàì÷èñëåííîãî ìîäåëèðîâàíèÿ ïîëó÷åíî ïðÿìîå ðàñ÷åòíîå ïîäòâåðæäåíèå âûñîêîãî êà÷åñòâà ðåçóëüòàòîâ çîíäèðîâàíèÿ ðåàëüíûõ ìàðñèàíñêèõ ëüäîâ, ïðîâåäåííîãî ñ ïîìîùüþ îðáèòàëüíûõ ðàäèîëîêàòîðîâ MARSIS è SHARAD [260].235синтетическая апертураzIIIxyÐèñ. 4.27: Ãåîìåòðè÷åñêàÿ ñõåìà ìîäåëè ãëóáèííîãî ðàäèîçîíäèðîâàíèÿ ïëîñêîñëîèñòîé ñðåäû ñ ðåëüåôíûìè ãðàíèöàìè. I äíåâíàÿ ïîâåðõíîñòü, II ïîäîøâàëåäÿíîãî ùèòà.236dBt,Μs0-2020406080100120-20-40-60-80-100Ðèñ. 4.28: Òèïè÷íûå ïðîôèëè Ë×Ì ñèãíàëîâ, îòðàæåííûõ îò ìîäåëè ñðåäû.Ñïëîøíàÿ êðèâàÿ: hs = 3 ì , hss = 2 ì .
Ïóíêòèðíàÿ êðèâàÿ: hs = 30 ì ,hss = 14 ì .-10-15-20 max, dB-25-30105201030hs401520hssÐèñ. 4.29: Ìàêñèìàëüíûå àìïëèòóäû ïîäïîâåðõíîñòíîãî îòðàæåíèÿ â çàâèñèìîñòè îò ñðåäíåêâàäðàòè÷íûõ âûñîò ðåëüåôà ïîâåðõíîñòåé. σx = σy = 1000 ì .2374.16 Ãëóáèííîå çîíäèðîâàíèå îêåàíà íà Ãàíèìåäå: ÷èñëåííîå ìîäåëèðîâàíèå.Ãàíèìåä ÿâëÿåòñÿ êðóïíåéøèì ñðåäè åñòåñòâåííûõ ñïóòíèêîâ ïëàíåò Ñîëíå÷íîé ñèñòåìû.
Ïîäîáíî äðóãèì ñïóòíèêàì ïëàíåò-ãèãàíòîâ, Ãàíèìåä ïîêðûò ëåäÿíîé îáîëî÷êîé. Ðàçëè÷íûå íàáëþäàòåëüíûå äàííûå è ðåçóëüòàòû ìîäåëèðîâàíèÿ ñâèäåòåëüñòâóþò î íàëè÷èè îêåàíà æèäêîé âîäû ïîä ëåäÿíîé îáîëî÷êîéÅâðîïû è Ãàíèìåäà.synthetic aperturex3 ,x4z1y1 ,y2x1 ,x2z2iceoceanÐèñ. 4.30: Ñõåìà ãëóáèííîãî ðàäèîçîíäèðîâàíèÿ ëåäÿíîé êîðû Ãàíèìåäà.238Ïîëó÷åíèå ïðÿìûõ äîêàçàòåëüñòâ ïðèñóòñòâèÿ ýòîãî îêåàíà ïîä òîëùåé ëüäàÿâëÿåòñÿ îäíîé èç âàæíåéøèõ çàäà÷, íåïðåðûâíî îáñóæäàåìûõ â ñâÿçè ñ ïëàíèðóåìûìè ìåæïëàíåòíûìè ìèññèÿìè ïî èññëåäîâàíèþ ïëàíåò-ãèãàíòîâ è èõñïóòíèêîâ.Ïðèìåíåíèå ãëóáèííîé ðàäèîëîêàöèè íà Ãàíèìåäå îñëîæíÿåòñÿ íàëè÷èåìðàçâèòîãî ðåëüåôà ïîâåðõíîñòè [300].  îäíîé èç íåäàâíèõ ðàáîò ïðèâåäåíû ñòàòèñòè÷åñêèå õàðàêòåðèñòèêè âûñîò ðåëüåôà ðàçëè÷íûõ ãåîëîãè÷åñêèõ ïîäðàçäåëåíèé Ãàíèìåäà ïî äàííûì ôîòîêëèíîìåòðè÷åñêîé îáðàáîòêè èçîáðàæåíèéâûñîêîãî ðàçðåøåíèÿ.
Îêàçûâàåòñÿ, ÷òî ïðèâåäåííûå òàì ñòðóêòóðíûå ôóíêöèè âûñîò ðåëüåôà õîðîøî ñîîòâåòñòâóþò ãàóññîâûì êîððåëÿöèîííûì ôóíêöèÿì (Ðèñ. 4.31 ). Ñîãëàñíî öèòèðîâàííûì òàì ðàáîòàì, òîëùèíà ëåäÿíîãî ñëîÿíà ïîâåðõíîñòè îêåàíà Ãàíèìåäà ñîñòàâëÿåò 60-80 êì.  íàøåé ìîäåëè äëÿ ðàñ÷åòîâ ïîäïîâåðõíîñòíîãî îòðàæåíèÿ ïðèíÿòî, ÷òî ãëàäêàÿ ïîâåðõíîñòü îêåàíàðàñïîëàãàåòñÿ íà ãëóáèíå 70 êì íèæå ðåëüåôíîé äíåâíîé ïîâåðõíîñòè. Ïðèýòîì òåîðèÿ è òåõíèêà ìîäåëèðîâàíèÿ, ðàçâèòàÿ â ðàçäåëå 4.3, ïðèãîäíà äëÿïðîâåäåíèÿ ðàñ÷åòîâ áåç êàêèõ-ëèáî èçìåíåíèé.log ∆hrms, km0.60.811.21.41.6log ∆r, km0.2500.250.50.7511.251.5Ðèñ.
4.31: Ìîäåëüíûå ñòðóêòóðíûå ôóíêöèè ñëó÷àéíîãî ðåëüåôà ïîâåðõíîñòè,àïïðîêñèìèðóþùèå ñòàòèñòèêó ðåëüåôà ðåàëüíîé ïîâåðõíîñòè Ãàíèìåäà ïî ðåçóëüòàòàì ôîòîêëèíîìåòðèè. Ñïëîøíàÿ è ïóíêòèðíàÿ ëèíèè ðàçëè÷íûå ãåîëîãè÷åñêèå ïîäðàçäåëåíèÿ Ãàíèìåäà, èññëåäîâàííûå â [300].239Àíàëîãè÷íî, ìîæíî âû÷èñëèòü îòðàæåíèÿ âîëí îò ðåëüåôíîé ñôåðè÷åñêîéïîâåðõíîñòè íåáåñíîãî òåëà (ðèñ. 4.30 ) Ñ ó÷åòîì êðèâèçíû ñôåðè÷åñêîé ðåëüåôíîé ïîâåðõíîñòè, åå ïðîôèëü â ïðèíÿòîé çäåñü äåêàðòîâîé ñèñòåìå êîîðäèíàò çàäàåòñÿ ôóíêöèåéz = h(x, y) −x2y2−,2R 2R(4.82)ãäå êðèâèçíà ñôåðè÷åñêîé ïîâåðõíîñòè ó÷èòûâàåòñÿ â êâàäðàòè÷íîì ïðèáëèæåíèè.