Вопросы ГЭК 2009new (1094840), страница 15
Текст из файла (страница 15)
Модели бывают разные, их бывает много. Чтобы выбрать одну из них надо понять, что мы хотим от модели, какие требования к ней предъявляем. Главное требование к модели - это способность предсказывать направление дальнейших опытов, причем предсказывать с требуемой точностью. Желательно, чтобы точность предсказания во всех возможных направлениях была одинакова. Это значит, что в некоторой подобласти, в которую входят и координаты выполненных опытов, предсказанные с помощью модели значения функции отклика не должно отличаться от фактического больше чем их некоторую заранее заданную величину. Модель, которая удовлетворяет такому или какому-либо аналогичному требованию, называется адекватной. Разработаны специальные статистические методы проверки адекватности модели. При выборе математической модели, при прочих равных условиях, будем предполагать степенные ряды, т.е. отрезки степенных рядов - алгебраические полиномы.
В качестве примера запишем модель в форме полинома для 2х факторов. Полином нулевой степени:
Полный факторный эксперимент
Перед планированием эксперимента необходимо определить область эксперимента, учитывая при этом следующие соображения:
-
Прежде всего, надо оценить границы областей определения Ф. При этом должны учитываться ограничения нескольких типов. Первый тип: принципиальные ограничения для значений факторов, которые не могут быть нарушены ни при каких обстоятельствах. Например, если Ф. - температура, то нижним пределом будет абсолютный нуль. Второй тип - ограничения, связанные с технико-экономическими соображениями (стоимость сырья, время процесса и т.д. Третий тип ограничений, с
которыми чаще всего приходится иметь дело, определяются конкретными условиями проведения процесса (технологией, существующей аппаратурой и т.д.). -
Оптимизация обычно начинается в условиях, когда объект уже подвергался некоторым исследованиям. И информацию, содержащуюся в результатах предыдущих исследований, будем называть априорной (при мерные графики, таблицы).
Выбор основного уровня
Наилучшим условиям, определенным из анализа априорной информации соответствует комбинация (или несколько комбинаций) уровней факторов. Каждая комбинация является многомерной точкой в факторном пространстве. Ее можно рассматривать как исходную точку для построения плана эксперимента. Назовем ее основным уровнем. Построение плана эксперимента сводится к выбору экспериментальных точек, симметричных относительно нулевого уровня.
В разных случаях мы располагаем различными сведениями об области наилучших условий. Если имеются сведения о координатах одной наилучшей точки и нет информации о границах определения факторов, то остается рассматривать эту точку в качестве основного уровня. Аналогичное решение принимается, если границы известны и наилучшие условия лежат внутри области. На рис.2. Изображена область определения для 2х факторов. Кружком отмечены наилучшие условия, известные из априорной информации. Чтобы правильно выбрать основной уровень следует пользоваться блок-схемой рис. 4.
Рис.2
Рис.4 Блок-схема принятия решений при выборе основного уровня
Выбор интервалов варьирования.
После того, как определен основной уровень каждого Ф., необходимо выбрать два уровня, на которых он будет варьироваться в эксперименте. Один из этих уровней считается верхним, а второй нижним. Обычно за верхний уровень принимается тот, который соответствует большему значению фактора.
Интервалом варьирования факторов называется некоторое число (свое для каждого фактора), прибавление которого к основному уровню дает верхний, а вычитание - нижний уровни фактора, т.е. интервал варьирования - это расстояние на координатной оси между основным и верхним либо нижним уровнями. Таким образом, задача выбора уровней сводится к более простой задаче выбора интервала варьирования.
Отметим еще, что для упрощения записи условий эксперимента и обработки экспериментальных данных масштабы по осям выбираются так, чтобы верхний уровень соответствовал +1, нижний -1, а основной нулю. Для факторов с непрерывной областью определения это всегда можно сделать с помощью преобразования: , где Xj - кодирование значений Ф.,
- натуральное значение Ф.
-натуральное значение основного уровня.
j - номер фактора
Пример:
На выбор интервалов варьирования накладываются естественные ограничения сверху и снизу. Интервал варьирования не может быть меньше той ошибки , с которой эксперимент фиксирует уровень фактора. Иначе верхний и нижний уровни окажутся неразличимыми. С другой стороны, интервал не может быть настолько большим, чтобы верхний и нижний уровни оказались за пределами области определения.
При решении задачи оптимизации необходимо выбрать для первой серии экспериментов такую область, которая давала бы возможность для шагового движения к оптимуму. В задачах интерполяции интервал варьирования охватывает всю описываемую область.
Выбор интервалов варьирования - задача трудная, т.к. она связана с неформализованным этапом планирования эксперимента. Возникает вопрос, какая априорная информация может быть полезна на данном этапе? Это - сведения о точности, с которой экспериментатор фиксирует значения факторов, о кривизне поверхности отклика и диапазоне изменения параметра оптимизации. Обычно эта информация является предварительной на первом этапе планирования эксперимента. В ходе эксперимента её приходится корректировать.
Точность фиксирования факторов определяется точностью приборов и стабильностью уровня в ходе опыта. Кроме того, для интервалов вводится градация - широкий, средний и узкий интервалы варьирования.
Дополнительно: Полный факторный эксперимент
Эксперимент, в котором реализуются все возможные сочетания уровней факторов, называется полным факторным экспериментом. При числе уровней каждого фактора равного 2, имеем П.Ф.Э. типа . В табл.1. для соответствующего значения k указано требующее число опытов N .
Таблица 1.
k | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
N | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 |
Условия эксперимента можно записать в виде таблицы, где строки соответствуют различным опытам, а столбцы — значениям факторов. Будем называть такие таблицы матрицами планирования эксперимента (МПЭ). МПЭ для факторов приведена ниже.
Факторы Опыты | X1 | Х2 |
1 | - 1 | - 1 |
2 | + 1 | - 1 |
3 | - 1 | + 1 |
4 | + 1 | + 1 |

Вектор строка
Существует несколько приемов записи МПЭ. Воспользуемся наиболее удобным: в первом столбце знаки меняются поочередно, во втором столбце они чередуются через 2, в третьем - через 4, в четвертом - через 8 и т.д.
Отметим ряд свойств, которыми обладает МПЭ. В данном случае мы возьмем те свойства, которые определяют качество модели, а это значит, что оценки коэффициентов модели должны быть наилучшими и что точность предсказания параметра оптимизации не должна зависеть от направления в факторном пространстве, т.к. заранее не ясно, куда предстоит двигаться в поисках оптимума.