Зубов В.П., Прокопов Н.И. Конспект лекций по курсу Основы химии и физики полимеров (1083648), страница 21
Текст из файла (страница 21)
Тст
М
Рис. 18.9. Зависимость температуры стеклования от молекулярной массы полимера
Наличие граничной молекулярной массы, выше которой Тст перестает зависеть от молекулярной массы, указывает на то, что молекулярная подвижность в полимере проявляется на уровне определенных «сегментов». Для гибкоцепных каучуков это 10 – 20 повторяющихся звеньев, для более жесткого полимера (полистирола) – это 100 – 200 повторяющихся звеньев.
Полимеры, используемые в стеклообразном (твердом) состоянии, т.е. пластмассы должны иметь Тст выше комнатной, что характерно для жесткоцепных полимеров.
Приведем несколько примеров:
Полиэтилентерефталат
Имеет температуру стеклования +90◦С. Повышенная жесткость цепи обеспечивается наличием фрагментов. Полимер дает нехрупкие прозрачные стекла, пленки и др. изделия.
Поливинилхлорид (ПВХ)
Имеет температуру стеклования +82◦С.
Повышенное значение Тст определяется межмолекулярными взаимодействиями благодаря присутствию полярных групп ( - Cl).
Один из самых крупнотоннажных полимеров. Применяется как в виде «жесткого» ПВХ, так и в виде пластифицированного «мягкого» материала (трубы, оболочка кабеля, линолеум и т. д.).
Полистирол (ПС)
Тст = +90◦С,
Повышенное значение Tст. благодаря наличию ароматических заместителей. ПС – это широко распространенный инженерный пластик.
Полиметилметакрилат (ПММА)
Тст = +100◦С,
ПММА является прочным и прозрачным материалом (органическое стекло).
Поликарбонат
Тст = +150◦С,
Поликарбонат является очень прочным прозрачным инженерным пластиком.
Вопросы для самостоятельной проработки:
-
Какие механические модели используют для описания свойств полимеров?
-
Охарактеризуйте зависимости различных термодинамических параметров от температуры.
-
Приведите примеры полимеров, обладающих высокоэластическими свойствами.
-
Какими особенностями характеризуются полимерные стекла.
-
Приведите примеры пластмасс.
Задачи для самостоятельного решения
5. Основные физико-механические свойства полимеров
5.2. Температура стеклования
Вопросы 2501 – 2502, 2403 – 2404
Раздел № 19. Кристаллическое состояние полимеров
Кристаллическое состояние – состояние вещества, когда существует дальний порядок (для обычных кристаллов он является трехмерным). Кристаллизация является фазовым переходом 1 рода.
В качестве примера веществ в кристаллическом состоянии можно привести соль, силикаты, мел, т.е. неорганические кристаллы; для них характерна ионная решетка (в узлах решетки находятся ионы). Прочные связи обеспечиваются силами электростатического взаимодействия между ионами.
Многие низкомолекулярные органические соединения также хорошо кристаллизуются (например, бензол, толуол). В этом случае соединения кристаллизуются по принципу наиболее полного заполнения пространства. Силами, которые притягивают молекулы друг к другу, являются слабые ван-дер-ваальсовые силы.
Молекулы биополимеров также могут образовывать молекулярные кристаллы, положение каждого атома в этих молекулах фиксировано, что позволяет расшифровать третичную объемную структуру биополимеров.
Рассмотрим теперь молекулы гибкоцепных полимеров.
Конформации молекул соответствуют гауссовым клубкам, причем около 90% пространства не занято собственно молекулой, и практически всегда мы имеем дело со смесью молекул разной молекулярной массы, т.е. различного размера, тем не менее, при охлаждении расплавов стереорегулярных гибкоцепных полимеров кристаллизация протекает очень быстро, и при охлаждении ниже Тпл кристаллического полимера образуется закристаллизованный полимер. Это можно обнаружить как структурными, так и термодинамическими методами. Однако в таких материалах никогда не бывает полной степени кристаллизации (можно обнаруживать как когерентное, так и диффузное рассеивание, которое появляется благодаря тому, что в материале присутствует не закристаллизованная (аморфная) часть). Таким образом, в кристаллизацию вступает только некоторая часть вещества, а остальная часть остается не закристаллизованной, причем удалить образовавшуюся аморфную часть невозможно. Различными методами можно определять размеры кристаллов, в закристаллизованных полимерах они оказались не очень большие.
Можно выделить следующие важные свойства кристаллитов:
-
степень кристаллизации полимеров никогда не достигает 100% (обычно бывает 20÷50%)
-
размеры кристаллитов составляют 100÷300 звеньев, что меньше контурной длины макромолекулы, составляющей 1000÷10000 звеньев; таким образом, размеры кристаллита меньше длины молекулы
Кроме того, могут образовываться особые структуры – ламелли. Исследования показали, что макромолекулы упаковываются в виде «гармошкообразной» структуры:
Поскольку частично закристаллизованный полимер представляет собой «самокомпозит», состоящий из «жестких» кристаллических и «мягких» аморфных областей, то его высокие механические свойства сохраняются даже в случае полимеров с невысокой молекулярной массой. Поэтому для получения изделий из кристаллизующихся полимеров высокопроизводительными методами литья и экструзии могут быть использованы относительно низкомолекулярные полимеры, вязкость расплавов которых невысока.
Осуществляется также фолдинг макромолекулярных цепей, при этом одна макромолекула может находиться в нескольких кристаллах одновременно, а остальная, не задействованная часть молекулы представляет собой аморфную часть.
Условно можно изобразить фолдинг макромолекулярных цепей в следующем виде:
Эта же модель объясняет, почему гибкоцепные молекулы разной длины легко кристаллизуются: нужны минимальные перестройки, чтобы перейти от расплава к кристаллической структуре.
В большинстве литьевых устройств стараются осуществить переход полимера из кристаллического состояния в вязко-текучее состояние, для того чтобы было удобно изготавливать различные изделия.
Температура плавления кристаллитов может быть больше или меньше температуры текучести соответствующего аморфного полимера. Поэтому после плавления, полимер переходит, в зависимости от молекулярной массы, либо в вязко-текучее, либо в высокоэластическое состояние. Для переработки выгодно первое, т.е. использование более низкомолекулярных полимеров:
Ε
1
2
Тст Тт1 Тпл Тт2 Т
Рис. 19.1. Зависимость деформации от температуры
Интервал температур, при которых кристаллические полимеры находятся в твердом состоянии и имеют высокие физико-механические характеристики по сравнению со стеклообразными полимерами, увеличивается на величину Тпл-Тст. Если Тпл достаточно высока, то для получения изделий, для которых требуется жесткость и высокие прочностные характеристики в широком интервале температур, можно использовать и гибкоцепные полимеры с невысокими Тст. Примерами могут быть полиэтилен, изотактический полипропилен, политетрафторэтилен, алифатические полиамиды.
При растягивании образца закристаллизованного полимера наблюдается картина аналогичная схеме на рис. 18.7.
В исходном состоянии кристаллиты были ориентированы изотропно, при растяжении происходит их переплавление с последующей ориентацией. Можно достичь ориентации полимеров в направлении вытяжки.
Зависимость напряжения от удлинения образца имеет вид:
σ
образование «шейки»
разрыв
σрекр развитие «шейки»
∆l
Рис. 19.2. Зависимость напряжения от удлинения образца полимера
σрекр – напряжение рекристаллизации.
Ориентация значительно повышает жесткость и прочность образца по направлению вытяжки. Одноосная ориентация применяется при получении волокон, двухосная при получении пленок.
Р ассмотрим подробнее ориентированное состояние (состояние, при котором молекулы ориентированы в каком-либо направлении):
Свойства таких материалов в продольном и поперечном направлениях будут различными. При растяжении образца его жесткость коррелируется жесткостью суммы всех молекул. Так, полиэтилен в высокоориентированном состоянии может быть прочнее стали, для получения таких материалов разработаны особые режимы вытяжки и ориентации. Однако низкая температура плавления полиэтилена существенно ограничивает применение этого материала.
Такие материалы получили название КВЦ – кристаллы с выпрямленными цепями
Если получить высокоориентированный материал на основе жесткоцепных полимеров, то можно добиться сохранения свойств, вплоть до весьма высоких температур.
Для этой цели можно использовать явление самоориентации с образованием жидкокристаллических структур в растворах жесткоцепных полимеров.
При исследовании зависимости вязкости растворов жесткоцепного полимера (ароматического полиамида) при увеличении концентрации полимера в растворе обнаруживается следующая картина:
η
с
Рис. 19.3. Зависимость вязкости растворов жесткоцепного полимера от концентрации
Выше некоторой критической концентрации происходит резкое падение вязкости и переход к другому состоянию раствора.
Переход происходит следующим образом:
Рис. 19.4. Переходные состояния раствора полимеров
Образовавшиеся структуры ведут себя как жидкие кристаллы, дальнего порядка в отношении оси нет, при формировании волокон или пленок из таких жидкокристаллических систем можно добиться высокой степени ориентации макромолекул. В результате получается высоко ориентированный полимер, обладающий высокой жесткостью и прочностью.
Вопросы для самостоятельной проработки:
-
Понятие о кристаллическом состоянии полимеров.
-
Молекулы каких полимеров могут образовывать молекулярные кристаллы?
-
Свойства, характерные для кристаллитов.
-
Зависимость деформации от напряжения при растяжения образца закристаллизованного полимера.
-
Ориентированное состояние молекул полимера, КВЦ.
Раздел № 20. Вязко-текучее состояние полимеров
Полимеры находятся в вязко-текучем состоянии при температурах выше их температуры текучести (на рисунке - заштрихованная область), т.е. при появлении необратимой деформации течения.
ε
Тст Тт Т