Главная » Просмотр файлов » Берзин А.А., Морозов В.Г. Основы квантовой механики

Берзин А.А., Морозов В.Г. Основы квантовой механики (1083078), страница 65

Файл №1083078 Берзин А.А., Морозов В.Г. Основы квантовой механики (Берзин А.А., Морозов В.Г. Основы квантовой механики) 65 страницаБерзин А.А., Морозов В.Г. Основы квантовой механики (1083078) страница 652018-01-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 65)

. . . . . . . 19Упражнения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203. Квантовая механика одной частицы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203.1. Квантовое состояние частицы.Принцип причинности в квантовой механике . . .

. . . . . . . . . . . . . . . . . . . . . . . . 213.2. Уравнение Шредингера для одной частицы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223.3. Стационарные квантовые состояния . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . 233.4. Динамические переменные в квантовой механике . . . . . . . . . . . . . . . . . . . . . . . 253.5. Средние значения динамических переменных. Операторы . . . . . . . . . . . . . . 263.6. Примеры операторов динамических переменных . . . . . . . . . . . . . . . . . .

. . . . . . 29Упражнения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294. Алгебра операторов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . 304.1. Основные свойства операторов динамических переменных . . . . . . . . . . . . . . 304.2. Произведение операторов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324.3. Коммутатор операторов . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334.4. Квантовая неопределенность физических величин . . . . . . . . . . . . . . . . . . . . . . 344.5. Соотношение неопределенностей . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354.6. Изменение средних значений физических величин со временем . . . . . . . . . 37Упражнения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . 405. Собственные функции и собственные значенияфизических величин . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415.1. Спектр значений физической величины . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415.2. Уравнение для собственных функций . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . 415.3. Свойства собственных функций и собственных значений . . . . . . . . . . . . . . . 435.4. Разложение волновых функций по собственным функциямдинамических переменных . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465.5. Собственные функции нескольких динамических переменных . . . . . . . . . . 495.6. Непрерывный спектр значений физических величин.Дельта-функция Дирака. . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .505.7. Спектр и собственные функции импульса частицы . . . . . . . . . . . . . . . . . . . . . . 53Упражнения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . 572676. Примеры стационарных состояний частицы . . . . . . . . . . . . . . . . . . . . . . . 586.1. Частица в одномерной потенциальной яме . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596.2. Частица в трехмерной потенциальной яме .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626.3. Квантовый гармонический осциллятор . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Упражнения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . 687. Движение частиц через потенциальный барьер . . . . . . . . . . . . . . . . . . . . 697.1. Потенциальная стенка . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . 697.2. Туннельный эффект . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737.3. Примеры туннельного эффекта. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75Упражнения . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 778. Момент импульса микрочастицы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788.1. Оператор момента импульса в сферических координатах . . . . . . . . . . . . . . . 788.2. Собственные значения и собственные функции момента импульса .

. . . . . 808.3. Операторы L̂+ и L̂− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 848.4. Орбитальный магнитный момент электрона . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85Упражнения . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 869. Водородоподобные атомы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 879.1. Стационарные состояния частицы в центральном поле. . . . . . . . . . . . . . . . . .879.2. Спектр энергии водородоподобного атома . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 909.3. Стационарные состояния водородоподобного атома . . . . . . . . . . . . . . . . . . . . . 91Упражнения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 9410. Стационарная теория возмущений . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9410.1. Матричная форма стационарного уравнения Шредингера . . . . . . . . . . . . . 9410.2. Теория возмущений для невырожденного энергетического спектра . . . . 9610.3. Теория возмущений для вырожденного энергетического уровня . . . . . . 10010.4.

Пример: двукратно вырожденный уровень . . . . . . . . . . . . . . . . . . . . . . . . . . . 101Упражнения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10211. Спин микрочастиц . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . 10311.1. Спиновые состояния электрона . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10311.2. Операторы спина . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . 10611.3. Полный момент импульса частицы со спином . . . . . . . . . . . . . . . . . . . . . . . . . 11211.4. Стационарные состояния водородоподобного атомас учетом спина электрона. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . .11611.5. Спиновый магнитный момент электрона . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12211.6. Уравнение Шредингера для частицы в магнитном поле . . . . . . . . . . . . . . 123Упражнения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 12512. Квантовая механика системы частиц . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12612.1. Волновая функция и динамические переменные системы частиц . . . . . 12712.2. Квантовые системы тождественных частиц . . . . . . . . . . . . . . . . . . . . . . . . . . . 13012.3. Статистика Бозе-Эйнштейна . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13212.4. Статистика Ферми-Дирака . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13712.5. Волновые функции двух фермионов . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . 139Упражнения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14213. Стационарные состояния сложных атомов . . . . . . . . . . . . . . . . . . . . . . 14313.1. Атом с двумя электронами: основное состояние . . . . . . . . .

. . . . . . . . . . . . . 14326813.2.13.3.13.4.13.5.13.6.13.7.Атом с двумя электронами: возбужденные состояния . . . . . . . . . . . . . . . . 148Периодическая система элементов Менделеева . . . . . . . . . . . . . . . . . . . . . . . . 153Самосогласованное поле в атоме . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157Спин-орбитальное взаимодействие в сложных атомах . . . . . . . . . . . . . . . . 159Атом в постоянном электрическом поле . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160Атом в постоянном магнитном поле . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . 165Упражнения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17014. Стационарные состояния молекул . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17114.1. Молекула водорода: электронные состояния .

. . . . . . . . . . . . . . . . . . . . . . . . . 17214.2. Молекула водорода: поступательное движение молекулы,колебания и вращения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17714.3. Энергетический спектр молекул . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . 187Упражнения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18815. Электронные состояния в кристаллах . . . . . . . . . . . . . . . .

. . . . . . . . . . . 18915.1. Основные приближения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19015.2. Уравнение Шредингера для валентных электронов . . . . . . . . . . . . . . . . . . . 19115.3. Квазиимпульс электрона в кристалле. Обратная решетка . . . . . . . . . . . . 19415.4. Энергетические зоны электронов . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19915.5. Приближения слабо и сильно связанных электронов. . . . . . . . . . . . . . . . . .20115.6. Понятие эффективной массы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20215.7. Электронные энергетические зоны в металлах,диэлектриках и полупроводниках .

Характеристики

Тип файла
PDF-файл
Размер
1,51 Mb
Тип материала
Предмет
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6381
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее