Кратные и криволинейные интегралы (1077063), страница 2
Текст из файла (страница 2)
8oBLASTX G PROIZWOLXNYM OBRAZOM RAZBIWAEM NA SISTEMU PODOBLASTEJ {Gk }, PERESEKA@]IHSQ,BYTX MOVET, LI[X PO GRANICAM. w KAVDOJ PODOBLASTI Gk PROIZWOLXNYMOBRAZOMWYBIRAEM OTÔÍ-12ÔÍ-12x1k ∈ S PROWODIM K Sx2kME^ENNU@ TO^KU Mk S KOORDINATAMI (x1k , x2k ) I W TO^KE Pk =f (x1k , x2k )KASATELXNU@ PLOSKOSTX, WEKTOR NORMALI ~nk ≡ ~n(Pk ) KOTOROJ OBRAZUET S OSX@ OZ OSTRYJ UGOL.pUSTX DALEE Sk – ^ASTX POWERHNOSTI S, KOTORAQ PROEKTIRUETSQ W Gk ; Πk – ^ASTX PLOSKOSTI, KASAXSm(Sk ),Sk , m(S) =TELXNOJ K S W TO^KE Pk , KOTORAQ PROEKTIRUETSQ W Gk .
tAKIM OBRAZOM, S =kkÌÃÒÓΠ=SΠk , GRANI KOTOROJ – PLOSKIE FIGURY {Πk }, LEVA]IE W KASATELXNYH K S PLOSKOSTQH Ik!m(Π) =X!m(Πk ) ∧ m(S) ,kXlimmax d(Gk )→0mΠk .kÔÍ-12.qcos γk = 11 + {fx0 (Mk )}2 + {fy0 (Mk )}2 .tAKIM OBRAZOMlimmax d(Gk )→0kcos γk=limmax d(Gk )→01 + {fx0 (Mk )}2 + {fy0 (Mk )}2 m(Gk ) =k=ZZ q1 + {fx0 }2 + {fy0 }2 dx1 dx2 ,GT.K. POWERHNOSTX S – GLADKAQ I PODYNTEGRALXNAQ FUNKCIQ – NEPRERYWNA W G.ÔÍ-12tROJNOJ INTEGRALÔÍ-12ÌÃÒÓÌÃÒÓm(S) =XqÔÍ-12−→iZ GEOMETRII IZWESTNO, ^TO m(Gk ) = m(Πk ) cos γk , GDE γk – UGOL MEVDU OZ I ~nk , T.E.X m(Gk )ÌÃÒÓpRx1 Ox2 Πk = Gk = pRx1 Ox2 Sk I POWERHNOSTX S OKAZYWA@TSQ POKRYTOJ ”^E[UJ^ATOJ” POWERHNOSTX@mASSA NEODNORODNOGO TELA. pUSTX W R3 OPREDELENO NEODNORODNOE TELO T KONE^NOGO NENULEWOGOOB_EMA m(T ) I KONE^NOGO DIAMETRA d(T ).
pUSTX µ(X) ≡ µ(x1 , x2 , x3 ) – PLOTNOSTX WE]ESTWA TELA T ,QWLQ@]AQSQ NEPRERYWNOJ FUNKCIEJ SWOIH ARGUMENTOW I NEOBHODIMO OPREDELITX M (T ) – MASSU TELAT.ÌÃÒÓÔÍ-127ÌÃÒÓÔÍ-12ÌÃÒÓÌÃÒÓÌÃÒÓÔÍ-12ÔÍ-12ÌÃÒÓÔÍ-12[ÔÍ-12dLQ NAHOVDENIQ M (T ) RAZBIWAEM T NA SISTEMU TREHMERNYH OBLASTEJ {Tk }, PERESEKA@]IHSQ, BYTXMOVET, LI[X PO GRANICAM:Tk = T ∧ m(Tk ∩ Tj ) = 0, ∀ k 6= j .kÌÃÒÓM (T ) ,Xlimmax d(Tk )→0ÌÃÒÓw KAVDOM TELE Tk PROIZWOLXNYM OBRAZOM WYBIRAEM OTME^ENNU@ TO^KU Pk = (x1k , x2k , x3k ) ∈ Tk IS^ITAEM, ^TO µ(Pk ) ≈ µ(X), ∀ X ∈ Tk .a TAK KAK S TO^NOSTX@ DO BESKONE^NO MALYH M (Tk ) ≈ µ(Pk )m(Tk ), TO ESTESTWENNO S^ITATX, ^TOµ(Pk ) m(Tk ).kÔÍ-12max d(Tk )→0FUNKCII fPO OBLASTI T I OBOZNA^A@TÌÃÒÓZf (x1 , x2 , x3 )dx1 , dx2 , dx3 ILIf (X)dX.TeSLI f OPREDELENA I NEPRERYWNA W T⊂ R3 I 0 < m(T ) < ∞, d(T ) < ∞, TOÌÃÒÓ∃kTzAME^ANIQ.1.ZZZZZZÔÍ-12oPREDELENIE.
pUSTX FUNKCIQ z = f (x1 , x2 , x3 ) OPREDELENA W OBLASTI T ⊂ R3 KONE^NOGO OB_EMA m(T ) I KONE^NOGO DIAMETRA d(T ). eSLI WNE ZAWISIMOSTI OT WYBORA RAZBIENIQ T NA SISTEMUPODOBLASTEJ {Tk }, PERESEKA@]IHSQ, BYTX MOVET, LI[X PO GRANICAM, I WYBORA OTME^ENNYH TO^EKX{Pk } : Pk ∈ Tk , ∀ k SU]ESTWUETlimf (Pk ) m(Tk ), TO EGO NAZYWA@T TROJNYM INTEGRALOMf (x1 , x2 , x3 )dx1 dx2 dx3 .T2.ZZZdx1 dx2 dx3 = m(T ) – OB_EM T .TtROJNOJ INTEGRAL OBLADAET TEMI VE SWOJSTWAMI, ^TO I DWOJNOJ.wY^ISLENIE TROJNOGO INTEGRALA.ÔÍ-12ÔÍ-123.pUSTX T ⊂ R3 – ZAMKNUTAQ OBLASTX KONE^NOGO OB_EMA m(T ) I KONE^NOGO DIAMETRA d(T ), OGRANI^ENNAQ POWERHNOSTX@ S, KOTORAQ L@BOJ PRQMOJ, PARALLELXNOJ OSI ZZZOX3 PERESEKAETSQ NE BOLEE ^EM WDWUH TO^KAH. eSLI f (x1 , x2 , x3 ) OPREDELENA I NEPRERYWNA W T , TO ∃f (x1 , x2 , x3 )dx1 dx2 dx3 .ÔÍ-12rIS.
9ÔÍ-128ÌÃÒÓÔÍ-12ÌÃÒÓÌÃÒÓTÌÃÒÓÔÍ-12ÌÃÒÓÌÃÒÓÌÃÒÓÔÍ-12ÔÍ-12ÌÃÒÓÔÍ-12ÔÍ-12oBLASTX G = pRx1 Ox2 T PROIZWOLXNYM OBRAZOM RAZBIWAEM NA SISTEMU PODOBLASTEJ {Gk }, PERESEKA@]IHSQ, BYTX MOVET, LI[X PO GRANICAM. w KAVDOJ PODOBLASTI Gk PROIZWOLXNYM OBRAZOM WYBIRAEMOTME^ENNU@ TO^KU Mk S KOORDINATAMI (xk1 , xk2 ). oTREZOK [ϕ1 (Mk ); ϕ2 (Mk )] PLOSKOSTQMI x3 = constPROIZWOLXNYM OBRAZOM RAZBIWAEM NA N ^ASTEJ. eSLI Tk ⊂ T – ^ASTX T TAKAQ, ^TO pRx1 Ox2 Tk = Gk ,ki+1ki+1. tAKIM, GDE xkiTO Tki – ^ASTX Tk , ZAKL@^ENNAQ MEVDU PLOSKOSTQMI x3 = xki3 < x33 I x3 = x3OBRAZOM, ZA ISKL@^ENIEM KRAJNIH ”SREZANNYH” PODOBLASTEJ, Tki – PRQMOJ CILINDR S OSNOWANIEM Gkki+1ki− xkiI WYSOTOJ ∆ki3 , T.E.
W OB]EM SLU^AE m(Tki ) ≈ m(Gk ) · ∆x3 .3 = x3wYBOR OTME^ENNOJ TO^KI Pki ∈ Tki REALIZUEM, ISHODQ IZ SLEDU@]IH SOOBRAVENIJ:ÌÃÒÓÌÃÒÓ(1) pRx1 Ox2 Pki ≡ Mk , ∀i ≥ 1, T.E. Pki = (x1k , x2k , xi3k );kiZx3(2) f (Pki )∆xki3 =f (x1k , x2k , x3 )dx3 – TEOREMA O SREDNEM.xki3ZZZf (x1 , x2 , x3 ) =Xlimmax d(Tki )→0Tf (Pki ) m(Tki ) =XXlimmax d(Tki )→0kif (Pki ) m(Gk ) ∆xki3 =ikxki+13=limmax d(Gk )→0limmax d(Tki )→0ikof (x1k , x2k , x3 )dx3 m(Gk ) =xki3ϕ2 (Mk )(x1 ,x2 )ZZ n ϕ2 ZooXn Zf (Mk , x3 )dx3 m(Gk ) =f (x1 , x2 , x3 )dx3 dx1 dx2kGϕ1 (Mk )ÌÃÒÓÌÃÒÓ= (TEOREMA O SREDNEM) =Xn X ZÔÍ-12ÔÍ-12a TAK KAK ISKOMYJ INTEGRAL SU]ESTWUET, TO EGO ZNA^ENIE NE ZAWISIT OT WYBORA RAZBIENIQ I OTME^ENNYH TO^EK. pO\TOMUϕ1 (x1 ,x2 )rIS. 10rIS. 11ÔÍ-12=x1 = r cos ϕx2 = r sin ϕZ2πdx1 dx2√G=λdϕ0rdr0a−√a+ Za2 −r 2ZaÔÍ-12dx1 dx2 dx3 = λ2(r +√a− a2 −r 2(x21 + x22 + x23 )−1/2 dx3 =a2 −x21 −x22x23 )−1/2 dx3ZZ= 2πλ(r2 + x23 )−1/2 rdr dx3 =D9ÌÃÒÓTx21 + x22 + x23ÔÍ-12pÔÍ-12M=λa2 −x21 −x22ZZZÌÃÒÓ√a+ZZZÌÃÒÓÌÃÒÓÔÍ-12ÔÍ-12pRIMER.
nAJTI MASSU [ARA x21 + x22 + x23 ≤ 2ax3 , ESLI PLOTNOSTX WE]ESTWA W KAVDOJ EGO TO^KEOBRATNO PROPORCIONALXNA EE RASSTOQNI@ DO NA^ALA KOORDINAT, T.E.ÌÃÒÓÌÃÒÓÔÍ-12√a2 −(x3 −a)2Z2a= 2πλZrdrdx30p= 2πλx23 + r20= 2πλZ2anqx23+a2− (x3 −a)2ÌÃÒÓÔÍ-12√a2 −(x3 −a)2x23 + r2 d x3 =Z2a q00o− x3 dx3 = 2πλ0Z2an√42ax3 − x3 dx3 = πλa23o0ÔÍ-12ÔÍ-12ÌÃÒÓÌÃÒÓÌÃÒÓzAMENA PEREMENNYH W TROJNOM INTEGRALE.ZZZf (x1 , x2 , x3 ) dx3 PROIZWEDENA ZAMENA PEpUSTX DLQ WY^ISLENIQ TROJNOGO INTEGRALAÌÃÒÓBpEREHOD K CILINDRI^ESKIM KOORDINATAMÔÍ-12Bz = 6 − x2 − y 2pRIMER.
nAJTI MASSU TELA, OGRANI^ENNOGO POWERHNOSTQMI 2z = x2 + y 2pPROPORCIONALXNA RASSTOQNI@ DO OSI OZ, T.E. µ ≡ µ0 · x2 + y 2 .ÔÍ-1210, ESLI PLOTNOSTXÌÃÒÓrIS. 12ÔÍ-12ÔÍ-12ÌÃÒÓÌÃÒÓTÔÍ-12lekciq 4. ∂x1 /∂r ∂x1 /∂ϕ ∂x1 /∂t cos ϕ −r sin ϕ 0 x1 = r cos ϕ x2 = r sin ϕ=⇒ J(r, ϕ, t) = ∂x2 /∂r ∂x2 /∂ϕ ∂x2 /∂t = sin ϕ r cos ϕ 0 = r =⇒ ∂x3 /∂r ∂x3 /∂ϕ ∂x3 /∂t 0x3 = t01 ZZZZZZ=⇒f dx1 dx2 dx3 =f (r cos ϕ, r sin ϕ, t)r dr dϕ dtÌÃÒÓTÔÍ-12ÔÍ-12Tx1 = ϕ1 (y1 , y2 , y3 ) x2 = ϕ2 (y1 , y2 , y3 )REMENNYH:, GDE FUNKCII {ϕk }3k=1 OPREDELENY I NEPRERYWNO DIFFEx3 = ϕ3 (y1 , y2 , y3 )RENCIRUEMY W NEKOTOROJ TREHMERNOJOBLASTI B.eSLI PRI \TOM QKOBIAN PREOBRAZOWANIQy1∂ϕkJ(y1 , y2 , y3 ) , det6= 0; . . .
∈ B,∂yjy3TO, RASSUVDAQ KAK I W SLU^AE DWOJNOGO INTEGRALA, MOVNO POKAZATX, ^TO PRI WYSKAZANNYH PREDPOLOVENIQH:ZZZZZZf (x1 , x2 , x3 ) dx1 dx2 dx3 =f ϕ1 (y1 , y2 , y3 ), . . . ϕ3 (y1 , y2 , y3 ) |J(y1 , y2 , y3 )| dy1 dy2 dy3ÌÃÒÓÔÍ-12ÌÃÒÓÌÃÒÓÔÍ-12ÔÍ-12ÌÃÒÓÔÍ-12ÔÍ-12ÌÃÒÓÌÃÒÓÌÃÒÓrIS. 13iMEEM:ZZZM =µ0 · r · rdr dϕ dt = µ0M =rr2 (6 − r2 − r)dr =56πµ0.50ÌÃÒÓÌÃÒÓ0Z2rdt = 2πµ0rdrdϕ0B6−rZ 2Z2Z2πZZZÔÍ-12ÔÍ-12T x = r cos ϕ z = 6 − x2 − y 2 ⇐⇒ t = 6 − r2 − WERH y = r sin ϕz 2 = x2 + y 2⇐⇒ t = r − NIZµ dx dy dz ==⇒=⇒z=t0 ≤ ϕ ≤ 2πÔÍ-12pEREHOD K OBOB]ENNOJ SFERI^ESKOJ SISTEME KOORDINATx1 = ar cos ϕ cos ψx2 = br sin ϕ cos ψ .
eSLI a = b = c = 1, TO IMEEM OBY^NU@ SFERI^ESKU@ SISTEMU KOORDINAT.x3 = cr sin ψrIS. 15 ∂x1 /∂r ∂x1 /∂ϕ ∂x1 /∂ψ a cos ϕ cos ψ −ar sin ϕ cos ψ −ar cos ϕ sin ψ J(r, ϕ, ψ) = ∂x2 /∂r ∂x2 /∂ϕ ∂x2 /∂ψ = b sin ϕ cos ψ br cos ϕ cos ψ −br sin ϕ sin ψ ∂x3 /∂r ∂x3 /∂ϕ ∂x3 /∂ψ c sin ψ0cr cos ψÌÃÒÓÔÍ-1211=ÔÍ-12ÔÍ-12ÌÃÒÓÌÃÒÓÔÍ-12rIS. 14ÌÃÒÓÔÍ-12ÌÃÒÓÌÃÒÓÔÍ-12ÔÍ-12= abc r2ÌÃÒÓ b 0 ≤ r2 ≤ 1 0 ≤ ϕ < 2π= −π/2 ≤ ψ ≤ π/2 cZπ/2Z2π= adcdϕ0Z1cos ψdψ−π/24r2 dr = πabc30kRIWOLINEJNYJ INTEGRALPEREMENNOJ SILY PO KRIWOLINEJNOMU PUTI.pUSTX W KAVDOJ TO^KEOBLASTI T⊂R3 NA MATERIALXNU@ TO^KU M (x, y, z) DEJSTWUET SILAF~ (x, y, z) = P (x, y, z)~i + Q(x, y, z)~j + R(x, y, z)~k. pRI PEREME]ENII MATERIALXNOJ TO^KI M (x, y, z) WOBLASTI T ⊂ R3 PO NEKOTOROJ TRAEKTORII L = [x, y, z]T ∈ T : x = x(t), y = y(t), z = z(t); t ∈ [tA ; tB ]SOWER[AETSQ RABOTA W , KOTORU@ I NEOBHODIMO NAJTI.ÔÍ-12ÔÍ-12rABOTAÌÃÒÓÌÃÒÓpRIMER.
nAJDEM OB_EM \LLIPSOIDA S POLUOSQMI a, b, c: x1 = ar cos ϕ cos ψZZZx = br sin ϕ cos ψdx1 dx2 dx3 = 2V (T ) =x3 = cr sin ψ22x2xx123J = abcr2 cos ψ2 + 2 + 2 ≤1aÌÃÒÓÔÍ-12 cos ϕ cos ψ − sin ϕ cos ψ + cos ψ = abc r2 cos ψ sin ϕ cos ψcos ϕ cos ψ ÔÍ-12 − sin ϕ cos ψ − cos ϕ sin ψsin ψ cos ϕ cos ψ − sin ϕ sin ψÔÍ-12ÔÍ-12ÌÃÒÓÌÃÒÓTREHMERNOJrIS. 16ÌÃÒÓÌÃÒÓdALEE PREDPOLAGAEM:(1) KONTUR L QWLQETSQ GLADKIM, T.E.
OBLADAET NEPRERYWNO IZMENQ@]EJSQ KASATELXNOJ, ^TO OZNA^AET NEPRERYWNU@ DIFFERENCIRUEMOSTX FUNKCIJ x(t), y(t) I z(t) W MNOVESTWE [tA ; tB ] I ∀ t ∈ [tA ; tB ]DOLVNO IMETX MESTO NERAWENSTWO |x0 (t)| + |y 0 (t)| + |z 0 (t)| > 0;(2) TO^KA M (x, y, z) OPISYWAET L PRI MONOTONNOM IZMENENII PARAMETRA t OT tA DO tB ;(3) FUNKCII P (x, y, z), Q(x, y, z), R(x, y, z) NEPRERYWNY NA L.oTREZOK [tA ; tB ] TO^KAMI {tk }nk=0 : tA = t0 < t1 < . . . < tn = tB RAZBIWAEM NA n ^ASTEJ. kAVDOMUZNA^ENI@ PARAMETRA t = tk SOOTWETSTWUET TO^KA Mk ∈ L S KOORDINATAMI x(tk ), y(tk ), z(tk ). sOEDINIWWSE TO^KI {Mk }0k=0 OTREZKAMI, POLU^AEM LOMANU@ S WER[INAMI W \TIH TO^KAH.x~ (x, y, z) NA U^ASTKE Mk M k+1 TRAEKTORII L PRIBLIVENNO S^ITAEM RAWNOJrABOTU ∆Wk SILY Fk12ÌÃÒÓÔÍ-12k+1∆Wk ≈ P (Mk )∆xk + Q(Mk )∆yk + R(Mk )∆zkÔÍ-12k=⇒ÌÃÒÓ∆xk = x(tk+1 ) − x(tk )4∆yk = y(tk+1 ) − y(tk )4∆z = z(t ) − z(t )4ÔÍ-12ÔÍ-12−−−→(F~ (Mk ); Mk M k+i ).
pRI \TOMÌÃÒÓÌÃÒÓÌÃÒÓÔÍ-12ÔÍ-12ÌÃÒÓW =n−1Xlimmax ∆tk →0∆Wk =k=0limmax ∆tk →0n XP (Mk )∆xk + Q(Mk )∆yk + R(Mk )∆zk .k=0ÔÍ-12ÔÍ-12I ESTESTWENNO S^ITATX, ^TOxÌÃÒÓÌÃÒÓzAME^ANIE 1. eSLI PREDEL W PRAWOJ ^ASTI POSLEDNEGO RAWENSTWA SU]ESTWUET I NE ZAWISIT OT WY~ (x, y, x)BORA SISTEMY TO^EK {tk }, TO EGO NAZYWA@T KRIWOLINEJNYM INTEGRALOM WEKTORNOJ FUNKCII FPO ORIENTIROWANNOMU KONTURU L I OBOZNA^A@TZZP dx + Qdy + Rdz ILIP dx + Qdy + RdzLAB4Snx =n−1XP (Mk )∆xk =n−1Xk=0P x(tk ), y(yk ), z(tk ) {x0 (tk )∆tk + o(∆tk )},k=04GDE ∆tk = tk+1 − tk . a TAK KAK P I x0 - NEPRERYWNY, TOlimmax ∆tk →0ZtB=P x(tk ), y(yk ), z(tk ) x0 (t)dttApROWEDQ ANALOGI^NYE RASSUVDENIQ DLQ4Sny =n−1XQ(Mk )∆yk;4Snz =n−1XR(Mk )∆zkÌÃÒÓÌÃÒÓ∃SnxÔÍ-12ÔÍ-12zAME^ANIE 2. pUSTX WYPOLNENY ISHODNYE DOPU]ENIQ Ik=0k=0ÔÍ-12ZZtBnP (x(tk ), y(yk ), z(tk )) x0 (t) + Q(x(tk ), y(yk ), z(tk )) y 0 (t)+P dx + Qdy + Rdz =LtAÔÍ-12MY NE TOLXKO DOKAVEM SU]ESTWOWANIE KRIWOLINEJNOGO INTEGRALA, NO I POLU^IM FORMULU DLQ EGOWY^ISLENIQ:o+ R(x(tk ), y(yk ), z(tk )) z 0 (t) dtÌÃÒÓÌÃÒÓzAME^ANIEZ 3.
eSLI A = B, T.E. KONTUR L QWLQETSQ ZAMKNUTYM, TO ISPOLXZU@T SLEDU@]EEOBOZNA^ENIE:P dx + Qdy + Rdz, UKAZYWAQ STRELKOJ ORIENTACI@ ZAMKNUTOGO KONTURA L.LzAME^ANIE 4. nEPOSREDSTWENNO IZ OPREDELENIQ KRIWOLINEJNOGO INTEGRALA I ZAME^ANIQ 2 SLEDUET:xpRI IZMENENII NAPRAWLENIQ OBHODA KONTURA L =AB KRIWOLINEJNYJ INTEGRAL MENQET ZNAK,ÔÍ-12BAZZP dx + Qdy + Rdz =P dx +LÔÍ-12LZZQdy +LRdz ;L13ÌÃÒÓxABP dx + Qdy + Rdz ;ÔÍ-12P dx + Qdy + Rdz = −x(b)ZÔÍ-12T.E.ZÌÃÒÓ(A)ÌÃÒÓÌÃÒÓÔÍ-12{L =ÔÍ-12ÌÃÒÓZLk } ∧ {m(Lk ∩ Lj ) = 0, ∀ k 6= j} =⇒k=1=ÌÃÒÓÔÍ-12N ZX;k=1LLk x~~~(g) {F = P (x, y)i + Q(x, y)j } ∧ L =: y = f (x), x ∈ [a, b]=⇒y ZZb noxx=tP (t, f (t)) + Q(t, f (t))f 0 (t) dt ==⇒ L =:; t ∈ [a, b]∧ P dx + Qdy =yy = f (t)ÌÃÒÓ−1 (b)fZZb=f −1 (a)a4L1 =L2 =Z2xydx + x2 dy.ÔÍ-12ÔÍ-12pRIMER 1. pUSTX A = (0, 0) I B = (1, 1). nUVNO WY^ISLITX Hk =Q(f −1 (y), y)dyP (x, f (x))dx +LkxyZ11223: y = x, 0 ≤ x ≤ 1 =⇒ dx = dy =⇒ H1 = (2x + x )dx = x = 1 ;00xyÌÃÒÓaLÔÍ-12(w)NSZ11: y = x2 , 0 ≤ x ≤ 1 =⇒ dy = 2xdx =⇒ H2 = (2x2 + 2x3 )dx = x4 = 1 ;0L3 =xyZ11: x = y , 0 ≤ x ≤ 1 =⇒ dx = 2ydy =⇒ H3 = (4y 4 + y 4 )dy = y 5 = 1 ,ÌÃÒÓÌÃÒÓ0200T.E.