Главная » Просмотр файлов » Исаченко В.П. - Теплопередача

Исаченко В.П. - Теплопередача (1074332), страница 95

Файл №1074332 Исаченко В.П. - Теплопередача (Исаченко В.П. - Теплопередача) 95 страницаИсаченко В.П. - Теплопередача (1074332) страница 952017-12-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 95)

Для изотермической стенки результирующий поток для этого теплообмена будет равен пулю. Тогда лучистый поток от газа к стенке можно выразить зависимостью Фг, =(Ев. — Е э.з)Р ° (18-38) где Г» — поверхность степки (оболочки). Плотности потоков эффективного излучения газовой среды и стенки найдем по методу сальдо. По аналогии с ранее приведенными зависимостями для серых тел (17-б) они могут быть представлены зависимостями применительно к отдельным полосам излучения (йй 74): ЕЮ..=(Е-)эх+4 (! — — '11 1 Е л=(Е.л).т+р.., (! — .,„). Черное излучение газа н степки. соответствующее предельным знаЧениям их степеней черноты, можно выразить соотношениями где е, и е,— предельные степени черноты газа (рис.

18.6) при температурах газа и стенки. Степень черноты газа е, ы определяется зависимостью з,ае,а, -!. а,ье,а, Е„ы * Е ч емт а,э,е,я,-(-а Ье а (е !зь Ь Степень черноты стенки в пределах отдельны'г полос аз моною принять равной интегральной степени черноты (з, „=«т]. Для стационарного теплового Режима р,л= — ры,. Тогда с учетом приведенных выше зависимостей получим следующее расчетное уравнение для лучистого потока 11чы Вт, передаваемого от газовой среды к стенке: .' [" ~Ъ)'-". ~ЪЯ 1 ! чрч + — — 1 Интегральные значения степенэ черноты (коэффициента поглощения) для смеси газов, как указывалось выше, в общем случае не равны сумме значений нх для отдельных компонентов смеси. Так, для смеси НзО и СО» степень черноты н коэффициент поглощения меньше суммы нх значений для НзО и СОз, что объясняется частичным совпадением их спектров излучения: з,=з,о +ен,о — баы (18.41) Степени черноты пара и лвуокиси углерода берутся иэ графиков (18-4), (18-8) по температуре газа при соответствуюшдх произведениях парцизльного давления на длину пути луча (р1).Приближенно средняя длина пути луче определяется пз соотношения 1=т —, а! (18-48) где Р†объ газового тела; т=й,р — поправочный коэффициент.

434 (18 43) Рассмотреэный метод расчета теплообмеиа излучением относится к газовым средам, не содержащим взвешенных твердых частиц несгоревших продуктов сгорания. В камерах сгорания топок и печей газовые потоки содержат указанные твердые частицы. Лля расчета лучистого теплообмена в топках н печах существуют различные методяки, прнвеленные в специальной литературе (Л. 1!9, 134, 140, 189). тв-т. спсвнным твшоовмии Лучистый перенос может сопровождаться одновременным переносом тепла путем теплопроводности н конвенции.

Совместный (камбиенрованный) процесс лучистого теплообменз и процесса теплопроводИости или коивекции, а также всех трех видов переноса называют сложным теплое б меном. Среди гронессов сложного теплооблгена различают р адианионпо-канвективный н радиационно-копдуктивэый теплообмен. Радиационно-коивектиеиый перенос теплоты является наиболее общим случаем сложного теплообмена; нри этны теплота переносится не только радиацией, но и теплопроводностью. и конвекцней. В радиацконно-кондуктивном теплообмене имеет место перенос теплоты в неподвижной ослаблиющей н теплопроеодной среде путем азлученяя и теплопроводности.

Сложный теплообмен описывается системой уравнений, состоящей нз уравнений энергии„ движения и оплошности, к которым добавляются условия однозначности. Для модели сплошной среды уравнении сохранения массы в количесгва движения (см. гл. 4) остаются неизменными. Уравнение энергии применительно к радиационно-конвективному стационарному теплообмену в однокол~понентной весжилгаемой жидкости, поглощающей, испускающей и рассезшающей энергию излучения, будет иметь вид: бгтэт+бш 4, + бит рр — — 0; (18-44) Данные по средней длине п>ти луча для газовых тел различной геометрической формы приводится и литературе (Л.

88). Поправка на отклонение от закона аддитивности для газовых смесей эа счет взаимного поглощения из.лучения компонентами берется пз графиков на рис. 18-7. Предельные степени черноты газа при Т и Т, берутся иэ графика рис. 18-6. Если гаэ ввляетсв гелектнвно-черной средой, а стенка черной понерхностью, то расчетное уравнение упропгается: Рве ! Э З. К лучастеку тенлсабиеву чеэщт се.вов»о- ег гв а в серой стевюв.

здесь Э„дч н др — соответственно векторы плотности теплового потока за счет тенлопроводиостн, конвекции и излучения (радиации). В общем случае этн величины изменяются в рассматриваемом пространстве. В уравнении (18-44) не учнтываются возможные внутренние источники теплоты и днссияация механической энергии. Граничные условия задаютсз разлнчно в зависимости от постановки задачи.

Раэлячным образом могут быть заданы физические и оптические параметры среды и граничной поверхности [Л. 1, 163). Задачи о совместном переносе энергии путем теплонроводности н излучения в общем случае являются весьыа сложными, поэтому овк решаются чнсленнымн или приближенными методами. Однако приме.

нительно к оптически тонким и оптически толстым слоям ($18-2) атг задачи имеют простые решения. При оэсутствнн коннекции зависимость (18.44) с учетом того, что согласно закону Фурье д,= — л 5габ1, принимает вид: бщ(ьдгаб!) =оВи бр. Для одномерной и плоской задачи это соотношение переходит в зависимость что эквившюнтно равенству д= — Ь вЂ” )- 7,= сонэ!.

ж Длн случая оптически тонкого слоя радиационный перенос тепла согласно (18-34) определяется зависимостью Ь (ТЙ вЂ” 7;) зг= х;+л— '. -1 Откуда следует, что др не зависит от положения точки. Интегрируя зависимость (!8-45), получаем: Х!т,— тй (18.46) Полный поток 4 также не зависит от положения точки и определяется суммой потоков, перекосныых теплопроводностью н излучением. Для оптически толстого слоя среды согласно (18-23) 1а,т эт рэ= лх ' Подставляя эту величину в (18-45), ныеем: э= — (х+ — '-') ~ После интегрщюванни поаучим: 4= —,(т,— т,) ) =(т, т,), л ч« (18-47) эП Уравнение (18-47) показмвает, что н в случае оптически толстого слоя среды потоки 7 и др пе зависят друг от друга, общий поток опре- 436 делается их суммой.

Радиационно-кондуктивный теплообмен в плоском слое для других исходных условий рассмотрен в [Л. 5, ПТ, 163); для цилиндрического слоя — в [Л. 116). Задачи радиационно-конвекгявного теплообменв даже для простых случаев обычно боаее трудны, чем задача радиационно-кондуктивного теплообмена. Ниже приведено приближенное решение [Л. 205) одной ,распространенной задачи раднационно-конвективного теплообмера. Существенные упрощенна позволяют довести решение до конца. Рассмотриь~ радиационно-конвектнаный перенос теплоты при турбулентном движении излучающей среды внутри цилиндрического канала. Канал ийеет пнвметр 6=2га, длина его равна 1, температура поверхности неизменна и равна Т,.

Среда имеет заданную температуру ка входе Ть физические свойства, ие зависящие от температуры, н равномерное распределение осредненно» скорости ш„по сечению канала. Процесс теплообменв является установившимся во времени. Требуется определить распрелеление температуры в излучающей среде и тепловой поток ~[Л. 205].

Используем уравнение (18-44) б!чде„+б(е д„+й(гдз — О, но с учетом турбулентного переноса теплоты. В рассматриваемом случае вектор д„, должен учитывать перенос теплоты как молекулярной, так и турбулентной теплота)оводносшю. Перенос теплоты за счет молекулярной теплопроводиости, описынаемый законом Фурье д,= — ьМТ, заметную роль играет лишь у стенки в области вязкого подслоя (здесь Т вЂ” осреднеиное во времени локальное значение температуры в турбулентном потоке в см. 6 4-5).

Турбулентный перенос теплоты можно описать уравнением (для изотроппой турбулентности) д= — ) дТ, (18-48) где Х,— коэффициент турбулентного переноса теплоты. Конвективный перенос зитальпни равен: д„=р,д„т. (! 8-49) Ркаиационный перенос теплоты приближенно определяется зависимостью да — 1 дт, (18-50) в которой в соответствии с (16-58) радиационный коэффициент теплопроводнастн 1б 7' х вх з« ' Зависимости (18.48) и (18-50) с учетом молекулярной теплопровпдности можно представить в виде уравнения д,= — 1 6Т; (18-51) здесь ) =-ь+йт+)чех — обобшвнный козффипнент переносе, учитьшаюхций н общем случае кондуктнвиый, турбулентный и радиационный перенос теплоты. (18'55) Применительно к осесимметричному потоку температурное поле в излучающей среде можно описать следующим дифференциальным уравнением, записанным здесь в пилницрических коорлинатах: дв I д'а 1 да дщ т (18-5л! здесь а,=й /рс~; О=Т вЂ” Т,— избыточная температура среды; г, х — со- ответственно текущее значение радиуса и расстояние от входа в канал.

Для определения температурного поля используется тот же под- ход, который ранее применялся прн решении задачи об охлаждениз бесконечно длинного цилиндра. Найдем решение дифференциального уравнения (18-52) методом разделения переменных: 6(х, г) =6(х)6(г). (18-53) Подставляя эавяснмость (18-53) в (18-52), получим два обыкно- венных дифференциальных уравнения: б" (г) ++ а' (г) + Э"-Э (г) .=- (Г (18-ой) б (х)+ — 6 (х)+6 6(х) — О. Частные решения этих уравнений с учетом, что ю„=сопя(, нме- ют внд: 0(г) =А)э(бг); (16-56) 6(х) =с,е'и+ с,е'", ( 18-5Т) где 6 — произвольная величина, м-': Уа(йг) — функция Бесселя первого рода нулевого порядка; (18-58) Следовательно, решение (18-53) можно представить функцией 6(х;г)=.АУ,(й)(сев" +се'"). (18.58) Рассмотрим граничное условие, выражающее теплообмен излучаю- щей срелы со степкой: — х„, ( —,") =,(61,, (18-6(8 В зтОй завиеимостн полагаатся, что перенОс теплоты молекулярной те~лопроводностью пренебрежимо мал по сравнению с радиационным переносом.

Используя (18-56) и (18-60), получаем: г,б) „„ (18-6 !) здесь Хпэ — радиационное число Нуссельта; р=бгс, Уг(р) — функция Бесселя первого рода первого гюрядкв. Радиационный коэффициент тепчоотдачи равен по определению гг "э г — г, Радиационный тепловой поток выражается зависвьюстью (1886) (т' — т,! А, й Подставляя значения ав, ьрзз и зр в (18-61), получаем следующее трансцендентное уравнение, имеющее бесконечное множество корней; ) —:~,"~=:"! '+'-'+('-')'+Г-')'1 А, т Из (18-62) следует, что радиационное число Нуссельта зависит от оптической толщины среды (агь), поглон!ательной способности стенки (Аь) н мало ивменаетсн с темпеРатУРой (7,77( 1). ГРаничное Условие на владе в канал (л=б): 6(г) з б =Т! — Т,, (18-63) Тогда уравнение (18-56) принимает вид: '=Е (".

— '.) (1564) где та (1865) Для входного сеченая канала при л=б зависимость (18-57) принимает вид: бг се+ сь (18-66) Для выходного сечения канала (к=1) имеет место следующее условие: — ( — ) =,8(л)„ь гав т (1567) Подставляя в зто уравнение б нз (18-57), яолучаем: с,у,ещ+су,етн= — гн(с еы+-с,еы) (18-68) где ~ + т. Рт, ) +(7 т, ) 11 и, 2 Тг — температура среды на выходе ~ю канала.

Характеристики

Тип файла
DJVU-файл
Размер
4,64 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6447
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее