Главная » Просмотр файлов » Исаченко В.П. - Теплопередача

Исаченко В.П. - Теплопередача (1074332), страница 6

Файл №1074332 Исаченко В.П. - Теплопередача (Исаченко В.П. - Теплопередача) 6 страницаИсаченко В.П. - Теплопередача (1074332) страница 62017-12-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

Первое ннтегриравание лает: л! (2.6) После второго ннтегрнроаання получим: 1= Ссх+ Сэ. (2-6) Из уравнения (2.6) следует, чта прн постоянном коэффициенте тепловроводностн температура в стенке изменяется по линейному закону. Постоянные С! н С» в уравнения (2-6) определяю!ся из граничных условий: прн х-О 1=1»г п Сэ 1 с: г„— гм щ х=й 1=1 н С,= — " з Подставляя значения постоянных Сг и Сз в уравнение (2-6), полу. чаем закан распрЕделения температуры в рассматриваемой плоской стенке: * з (2-7) Если отсчет избыточной температуры в стенка вести от наименьшей ааДанной темпеРатУРы 1 ь то УРавнение (2-7) можно пРивести к безРазмерному виду. Обозначим б»=» †»,,з — тенущий температурный напор или избыточная температура; б»а=»зг †»га†полный температурный напор илн наибольшая избыточная температура.

После введения этих обозначений уравнение (2-7) запишется следующим образомг б»=й» вЂ” — л ыг з или ш г — =.- ! — —. Ь», 3. Обозначим б»/б»с= — безРазмЕРный темпеРатУРный папоР или безразмерная избыточная теьгпература; х»б=Д вЂ” бевразмерная координата; получим: В=! — Х. (2-8') Уравнение температурного поля (2-8') является универсальным. Его уннверсалыюсть заключается в там, что распределение температуры в стенке можно представить едивой прямой в отрезках на асях для любого заданного значения 1еь »,а и б (рис. 2-2). В ряде случаев поль- зоваться безразмернымн уравнениями весьма И=г" т удобно. Для определенна количества теплоты, проХодящего через единицу поверхности стенки в единицу времени в направлении оси Ох, воспользуемся заковом Фурье, согласно которому Ч.= — ьгу»/дх. Учитывая, что д»»дх=-Сг= = (»ы †»м)/б, после подстанонни значения д»/дх в выражение закова Фурье получим: е л з г ч= з(1 — 1).

(2-9) Рнс. Х-Х Безразнерзае вале тенсерзтгг з пле Из уравнения (2-9) следует, что количество сгеа стенке О=! - Х тепло~ы, прахопящее через едшгнцу поверхности ствнкн в единицу времени, прямо пропорциональна коэффициенту теплопроводности ь, разности температур на наружных поверхностях стенки 1м — 1,з и обратно пропорцпонально толщине стенки б.

Следует указать, что тепловой поток определяется не абсолютным значением температур, а их разностью !м †»юй й», которую принято называть температурным напором. Отношение Д»б, Вт»(ьгз. К) называется тепловой проводимостью стенки, а обратная величина б»Ь, мз.К»Вт — тепловым или термическим сопротивлением стенки.

Последнее представляет собой падение темпераХуры в стенке на единицу плотности теплового патока. Зная плотность яеплового потока, легко вычислить общее количество теплоты Ое ко- а торсе передается через поверхность степки величиной Р за промежуток времени т: (1 — орт — " (1 1 )р. Лх-1О) Из уравнения (2-6) найдем: з л' После введения этого выражении в уравнение температурного поля (2-7) получим: 1=(м — + х. (2-11) Иа уравнении (2-11) следует, что прн прочих равных условиях температура в стенке убывае~ тем быстрее, чем больше плотность теплового потока Выражения (2-7) н (2-9) получены в предположении, что а=сепий В действительности Л является переменной величиной. Рассмотрим случай, котла коэффициент теплопроволмости является только функцией температуры".

Л=Х(1). Для многих материалов заиисимость нозффициеита теплопроводности от температуры близка к линейной: ЛРУ (1+б1), где )е — значение коэффициента теплоправодности при О'С. На основании закона Фурье "(ОЖ= "'( + ) дч' (а) Рааделяя переменные и интегрируя выражение (а) в пределах от х=б до л=э в интервале температур от зм до 1сь получаем: рз=д,~(-)-Ь(~ +™ (йа — 1„).

(б) В выражении (б) множитель (1 ( 1 го+ем ) является среднеинтегральным значением коэффициента теплопрааодности, т. е. гм При этом плотность теплового патока Ф Вт/мт, иа поверхностипластины зэ (зм зст). (2-12) Из уравнения (2-1Э) следует, что если коэффициент теплопроводности Л зависит от теипературы, то д можно вычислять в предположении, что а=союз(, принимая для него среднеинтегральиое значение и интервале температур от )эл до 1ю Интегрируя выражение (а) в пределах от к=0 до любой текупгей координаты л и в интервале температур от ( г По й получаем выражение для температурного поля: 12-14) Из этого уравнения слелует, что температура в стенке изменяется не линейно, а по кривой. Характер телгпературной кривой определяется знаком п числовым значением коэффициента Ь. рассмотрим теплопроводносгь многослойной плоской стенки, состоящей из л одноролных слоев.

Примеы, что контакт между слоямн совершеипый и температура На сонрикасаюшихся поверхностях двух слоев опинакоза. При стационарном режиме тепловой поток, проходящий ~ерез любую нзотермичсгкую поверхность неолноралнай стенки, один и тот же: дд/длшб. При ааланных температурах на внешних поверхностях такой стен. кн, размерах слоев и соответствухнцнх коэффициентах теплопровопностй можно составить систему уравненийг р= —,' ((.,— г„й Л, й — Э, (~ (и) Л (в) Ф= — (г — 'мед ! к, э„ Опрелелив температурные напоры нэ (в) в квжлоы слое н сложив правые н левые части получениъш уравнений, будем иметь: гз з, .э„ Отсюда плотнгх ть теплового потока г" — гм о гм — г.

ы г., 1 [2-15) Велнчнкэ ~ =Ь,г'хн равная сумме термических сопротивлений всех "=3 л слоев. нээываттсн полным ~ерническим сон;ютннлеэнем теилопрозопности многослойной стенки. Прн сравпеннн переноса теплпгы через многослойную стеину и стенку нз однородного материала удобно ааестн э рассмотрениезкзиваленгный коэффициент теплопроволностн Л, многослойной стенки. Он равен коэффициенту теплопроволностн однородной ггеики, толщина которой б равна толщине многослойной стенки'~~~ Ьо а термическое сапро. тивление равно термическому сопротннлению рассматрнваемой маогослойной стенки, т. е.

Е з. =< 1 с (2-)б) Иа уравнения (2-16) следует, что эквивалентаый коэффициент теплопроводиости Х , зависит не только от теплофизических свойств слоев, но н от нх толщины. Температуры на границах соприкосновения двух соседних слоев равны: 4 =1" а ( л'+ л* )<1 ь, 3, (2.!7) ит г< ли+« — 1«< б у <,, Внутри каждого из слоев температура изменяется согласно (2-7» нли (2-14). а для многослойной стенки в целом теипературная кривая представляет ломаную линию б) Граничные условия третьего родп (теллонередона) Передача тепла из алкой подвижной срелы (жалкости нли газа) к другой <срез разделяющую их опяородпую или многослойную твердук, стенку <побой формы называется тепло передачей ТеплопереЛача включает в себя теплоотдачу о< более горячен жидкости к стенке, теплопроводность п стенке, теплоотдачу от стенка к более холод- а Л-се <с ной подвижной среде.

т. < Рассмотрим теплопередачу через одиород- ::Ог ную н многослойную плоские стенки. т < Пусть плоская однородная стеака имеет тол- зсс'::г. ем шину б (рнг 2-3) Заданы коэффициенты тепло- .';;, е:г зе проводностн стенки Х температуры окружающей среды 1, и 1 ь а также коэффициенты тепло- отдачи о< и пт; будем считать, что величины 1„<, уаз, и< и ас постоянны и не меняются вдоль поперхности. Это позволяет рассматривать иаие- и пение температуры жидкое~ей и стенки только э а изпйаэлеиин, пейпендик) лнйном плоскости Рзс У З т салансрм<ааа стенки. через алассув степку. 29 При заданных условиях необходимо найти тепловой поток ат горячей жндКости к холодной и температуры на поверхностях стенки.

Плотность теплового потока от горячей жидкости к стенке определяется уравнением 9- г((мг — (м). (2-18) При стационарнои тепловом режиме тот же тепловой поток пройдет путем теплопроводностн через твердую стенку! 9=-~-(~ — 1 ). (2-12) Тот же тепловой поток передается от второй поверхности стенки к холодной жидкости за счет теплгютдачи: 9 «гИ т — 1 т). (2-2О) Уравнения (2-18) — (2-20) можно аасисать в виде 1 9 г =1м — (и' 1 12-21) Сложив равенства (2-21) пачленно, поаучимг 9 (-;;)-х-(- — ) =г- — 1-. ! 3 1 Отсюда плотность теплоыко потока, Вт/м', г,— ! .,+т+ы Обоз начиэс ! ,+Г+, Эта величина измеряется в Втг'(мз К) . С учетом (2-23) ураввение (2-22) можно записать в виде 9=й(1,— 1 ), Вт)ма.

(2-24) Величина й имеет ту же размерность. что н а„и называется коз ффнцв ситом теплопередач и. Коэффнциенттеплопередачн Ахарактеривует интенсивность передачи теплоты от одной жидкости к другой через разделяющую их стенку и численно равен количеству теплоты, которое передаетси через единицу поверхности стенки в единицу времени при разности температур между жидкостями в один градус. Величина, обратная коэффициенту теплоперсдачи, вазывается полным термическим сопротивлением теплопер сдачи. Полное термин.скос сопротивление однослойной степин запиюется: (2-йо) Из (2-26) видно, что полное термическое сопротивление склалываетсн нз частных теРмнческнх сопРотнеленнй 1/пь б/Х в 1/оч, пРнчем 1/а! )(г — термвческое сопротивление теплоптдачи от горячей жидкости к поверхности шинки; 6/ь=й — 'термическое сопротивление теплопроволности стенки; 1/ш=7ш — термическое сопротивление теплоотдачи от поверхности стенки к холодной жидкости.

Поскольку общее термическое сопротивление состоит из частных термических сопротивлений, то совершенно очевидно, что в случае многослойной стенки нужна учитывать термическое сопротивление каждого слон. И если стенка состоит нз слоев, то полное термическое сопротивление теплопередачи через такую штину будет равно: )7= — = —,+ —,'+ —;+" + — "+— ! ! 3, 3 3„! или (2-26) й =-- +Д' + Д г, ! ! Плотность тепвового потока черш многослойную стенку, состоя- щую нз л слоев, будет рвана: =й(! — ! ). (2-27) вч З, Дг ! Уравнение (2-27) для мвогосчойной стенки подобно уравнению (2-24] для однородной плоской стенки. Различие заключается в выражениях вдя кочффнцнентов теплоперсдзчн /г. При сравнении уравнений (2-26) и (2-23) видна, что соотношение (2-23) явзнется частным случаем уравнения (2-26), когда и:=1. Тепловой поток Гг, Вт, через поверхность г" твердой стенки г;1=др=йб/Р.

Характеристики

Тип файла
DJVU-файл
Размер
4,64 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее