Главная » Просмотр файлов » Дейч М.Е. - Техническая газовая динамика

Дейч М.Е. - Техническая газовая динамика (1062117), страница 76

Файл №1062117 Дейч М.Е. - Техническая газовая динамика (Дейч М.Е. - Техническая газовая динамика) 76 страницаДейч М.Е. - Техническая газовая динамика (1062117) страница 762017-12-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 76)

радиусы кривизны меридионального сечения поверхности тока Я на рис. 9-9 достаточно велики). Считаем, что внешний и внутренний теплообмен отсутствуег, а решетки ступени обтекаются безотрывно. Рассмотрим поток за направляющей решеткой. Воспользуемся упрощенным уравнением радиального равновесия (9-43), записав его в следующей форме: для сечения 0 — 0 где р„р„ро р„с„с.„с„а, — давления, плотности, скорости и углы потока перед и за направляющей решеткой. Предполагаем, что функция а1=п1(») известна. Вид этой функции определяется принятым законом закрутки направляющих лопаток. Очевидно, что поток газа должен удовлетворять уравнениям энергии и неразрывности, Для каждой элементарной кольцевой струйки, протекающей через направляющую решетку, уравнение энергии можно записать в такой форме: где с — энтальпия торможения в зазоре; см, с„ /и, с, — скорости и энтальпин газа в конце изоэнтропического и действительного процессов расширения в направляющей решетке; 2Р,— к.

п. д. направляющей решетки (приближенно определяемый как в,=у'). Продифференцируем уравнение (9-46) по радиусу г: «20 «см ! (2»ас,«с,— с,«Ч, '( 2 9-46) «» «» + 2'2 2« /' (9- 6 Производная — характеризует изменение эитальпии «»1» «» потока в зазоре за направляющей решеткой по радиусу и, как известно, может быть записана таким образом: Здесь р„ — плотность газа в конце изоэнтропического расширения в направляющей решетке; р, — плотность газа в конце действительного расширения (при наличии потеРь). Отношение плотностей можно выразить формулой (9-48) где Х!! = с!г1а „ — теоретическая безразмерная скорость за направляющей решеткой.

Следовательно, производная и!!! ! в!рв — =у — — ', с!г вр, в!г ' или с учетом (9-43б) !1 ! г! Сов яв +=х, (9-49) Подставляя (9-49) в уравнение энергии (9-46), получаем дифференциальное уравнение распределения абсолютных скоростей по радиусу в зазоре: !го, (' сов'ав ! г!Чв ! а!в') г г(г ! в ' г злв в!г 2авв — +(у в1, — — — — — — — ) с =О, (9- >О) Т св =Кв ехр [ 2 ( 9 с ' — и!, с —,,') в!г ~, (9-51) гк где К, — постоянная, отвечающая исходному (среднему илн корневому) сечению. Уравнение (9-51) в рамках рассматриваемой струйной задачи является наиболее общим. где й„=с', /2в!в — располагаемый теплоперепад в направляющей решетке в данном сечении по радиусу.

Интегрируя уравнение (9-50), находим: )чз (9-48) следует, что при дозвуковых скоростях и умеренных потерях в направляющей решетке отношение плотностей рв/р„близко к единице. Расчеты позволяют установить ту область значений Рп и в1„в которой можно принять у,=1. Без большой погрешности такое упрощение допускается при Х„ ( 1. При сверхзвуковых скоростях функция у, должна быть сохранена в уравнении (9-50). Однако в некоторых случаях можно использовать упрощенные зависимости у,(х!в, ти), а при слабом изменении в,! и в1, по радиусу у принимается для каждого участка постоянной.

Имея в виду, что у, зависит от Х!! и в1„следует заключить, что при точном расчете ступени на сверхзвуковых скоростях метод последовательных приближений становится неизбежным, Следует подчеркнуть также, что влияние сжимаемости косвенно учитывается в уравнении (9-51) функциями а, и в1,. В зависимости от числа М, меняются потери и угол выхода из направляющей решетки. Следовательно, вид функций ти(г) и а,(г) зависит от М„' согласно (9-51) при изменении этих функций меняется и характер распределения абсолютных скоростей с,(г) в зазоре. Необходимо также отметить, что уравнения (9-50) и (9-5!) справедливы для любого закона закрутки. Перейдем теперь к расчету потока за рабочей решеткой. При сделанных выше допущениях условие радиального равновесия в сечении 2 — 2 выражается первым уравнением (9-44): ! иг!в, в~о — ими!+ и (гав сов р, и)в гз сов'ов 2 рв в!г г (9-52) где 1г, и р, — давление и плотность, а с, и а, — скорость и угол потока за рабочими лопатками в абсолютном движении; и — окружная скорость на текущем радиусе г; р, = рв (г) — угол выхода в относительном движении, являющийся заданной функцией радиуса; гс, — относительная скорость за рабочей решеткой.

Предполагаем далее, что радиальное смещение струек при переходе из контрольного сечения 1 — 1 в контрольное озо 38" сечение 2 в 2 будет малым (и, и,). Тогда уравнение энергии для относительного потока можно представить в известной форме: о5 оРа + — =' +— гч, (9-53) где в, — относительная скорость на входе в рабочую решетку; 1, — энтальпия газа перед рабочей решеткой; а), — к. и. д. рабочей решетки (а)а=(а'); 1, — энтальпия газа за рабочей решеткой в изоэнтропическом процессе.

Теоретическая и действительная скорости за решеткой связаны соотношением гса — У т)а ~аг са 1 'о '+2' После подстановки 1, в (9-53) находим: а з а аа с,— и, Е =1+ — + —. О за 2Ча 2 Продиффереицировав уравнение энергии, получим (полагаем с(1 )а(г= О): о'аа аоа а(аоа о'а оэа о' г / а .а — + — * — '-- — '+ — ( ' = О. (9-54) аГг Ча Ыг 2Ча Ыг а(г ~, 2 Заменим в уравнении (9-54) Очевидно, что 1„=1„(г) и ша.=гс,(г) являются искомыми функциями, а х,=ч,(г) и га,= — ш,(г) могут рассматриваться как заданные функции радиуса г. Энтальпия потока за направляющей решеткой определяется по уравнению энергии: Используем уравнение радиального равновесна опм += —,' —, „~;=-Х.

( ""1' ', (9-55) где а~ х.= — „, Уравнения (9-54), (9-55) и (9-56) решаем совместно. После некоторых упрощений получаем искомое дифференциальное уравнение: 1 т засоаага ) ~1~,~ а а йг ( г 2Чаааг 1 и (о,ч и) — 27 а) оа совр,ю +а) —" — =О, - (9-57) Уравнение (9-57) является нелинейным. Оно линеаризуется только в частном случае, когда г((с„ г)~Я=О. Интегрируя (9-57) в этом случае, т. е.

с учетом Ы(саа г) = О, находим: а(г г / т а) соаа га ) ааа ,=а. *р~(( — — — ' — ах ъ ~)а~ ча 'а (9-58) где К, — постоянная, определяемая для исходного (среднего или корневого) сечения. Условие г((с„,г)/с(г=О выполняется строго при закрутке ступени по методу постоянной циркуляции '. Однако, как показывает опыт, это условие приближенао осуществляется и в ряде других практически важных случаев. Постоянные Ка и Ка в уравнениях (9-51) и (9-58) определены, если известны скорости с~ и аа в каком- либо сечении по высоте лопаток. Эта задача решается применением уравнения неразрывности для сечений 1-1 и 2-2." озб 2 2 с, — и~, = 2ис, соз а, — и'. (9-55) 'Си й9ль г г 0=2идаы!Р „) О,зш а,с(г) г» г 0=2иаа,,р ) д,з1п~,с(г. (9-60) г» Входящая в уравнение (9-58) функция тм при упрощенных решениях может быть принята равной )( =сопя( для,всей ступени или отдельных кольцевых струек '.

Следует также отметить, что дифференциальное урав пение (9-57) для неподвижного рабочего колеса (ю=0) переходит в уравнение (9-50). 9-4 РАСЧЕТ ПОТОКА И СТУПЕНИ С ДЛИННЪ|МИ ЛОПАТКАМИ ПОСТОЯННОГО ПРОФИЛЯ Рассмотрим ступень с осевым потоком газа, полагая, что поток на входе в направляющую решетку имеет равномерное поле скоростей. Поставим следующую задачу: установить распределение параметров в зазоре и за рабочей решеткой по радиусу, если лопатки имеют постоянный профиль по высоте. Решение этой задачи позволяет дополнительно получить исходные данные для расчета ступени с лопатками постоянного профиля по аэродинамическим характеристикам решеток и может быть использовано для определения той предельной веерности решеток, при которой можно применять лопатки постоянного профиля.

Расчет ступеней с лопатками, постоянного профиля можно выполнить, полагая постоянными углы по радиусу а! и рь Более точный прием расчета, излагаемый ниже, состоит в том, что углы а! и рз задаются в виде функций радиуса г. Этот способ целесообразно применять в тех случаях, когда веерность ступени оказывается значительной. Многочисленные опыты показывают, что угол а, можно выразить в зависимости от относительного шага или радиуса формулой П1аа, 1а аг — — 1а а!„+ 2 ( — 1) (г — 1), (9-6! ) ' Поток газа в ступени за направляющей и рабочей решетками является закрученным, т.

е, имеет неравномерное поле сиоростей как при абсолютном, так и в относительном движении. Как показано в й 5-16, в таком потоке поле полной энергии буде~ неравномерным. 598 где й 1а а, = та а„— 1а а„; а!,, а,„— углы выхода потока у вершины и соответственно в корне воч сечении, г = г)г«! 㫠— радиус корневого сечения, г — радиус те. кущего сечения; с, г" (г) с!« г" (9-62) Здесь — Г 2п,Ь, — Ь, ( — 1)'— р(„)=Г1+,( !)(Р 1)+, (-, 1). 1+ и', (9-63) " = 1+ (и, — Ь, ( — 0Р п,=таз„; 1 Ь~ =-; (1аа!» — 1а««) Для определения сиорости с, необходимо знзть величину с!« в корневом сечении, С этой целью преобрззуем уравнение неразрывности (9-59), ззписав'его для сечений Π— О и 1 — !: гз сз (г — 1) = ~ ргса!»1йгп ! где с, с — осевые составляющие скорости в сечениях Π— О ао' а! р, = р,(р, — относительная плотность в зазоре. Функция с, в уравнении (9.64) может быть определена по фор муле с,1аа, с ! — — Сг з!п »~в У!+!а а, или приближенно и" (г) с =с «с з!па,=г « — „з!п аг, (9-65) а! г где а, принимается г!о формуле (9-6!г Приведенные выше ззвисимости справедливы, еслигпоток в за.

зоре дозвуковой. При смешанных течениях а зазоре, когда в нижней ,! г« В= — =2 — +1. Подстзвив (9-61) в уравнение (9-50) и проинтегрировав последнее, получим: о !9-69) — ва в = — =гч. !в вял (9-66) »и ~ Н 1+ я а ! или приближенно (Ь, = О) г8 — ! 3" чи» Вм =~ 8 Ь,! с„, + си, 1. =. — =г ~гак соа!а+ "аза — Ьо! з !г (г)] Ь ! 2» зак Г (967) "з!к — "з!к Нок ! — — Ь =1 — Ь Н ю — оаН Н о зк о "оа р=1 — — = Н "оьх — =1 — р Нок 1968) — Н, где Н = —. Н зк 600 части ступени (у корневых сечений) с,) а,1, формула (9-62) неприменима.

В этом случае необходимо учитывать отклонение потока в косом срезе направляющей решетки. Перейдем теперь к расчету потока за ступенью. Воспользуемся основным уравнением (957) и проинтегрируем его при о)!=сопя! и с((си,и) = О для принятого закона изменения углов по радиусу Ь з!и за в(п за= з)п гяь+ 2 (8 — 1)(г — 1). В результате интегрирования находим приближенное выражение Здесь взь — значение ва в корневом сечении; рза — угол вектора взл, д =(1 — ]л,— Ь,(8 — !)]о)! о,=жп) а', 1 1 Ь, = 2 Ь з)п !а= 2 (з1п ряо — з!п Ряь).

Характеристики

Тип файла
DJVU-файл
Размер
5,74 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6458
Авторов
на СтудИзбе
304
Средний доход
с одного платного файла
Обучение Подробнее