Диссертация (1025996), страница 6
Текст из файла (страница 6)
Однако, несмотрянаопределенноеприменениеразнообразиеполучилисистемыпредложенныхсвариантов,традиционнымПИДпрактическоерегулятором,базирующимся на идеологии линейной теории управления [2]. Как было сказановыше, управление ротором используемой в медицинской практике модели НВКаксиального типа Incor осуществляется также с применением ПИД законарегулирования.34Согласно [58] ПИД регулятор был изобретен еще в 1910 г. В 1942 г.
ЗиглериНикольсразработалиметодикуегонастройки,апослепоявлениямикропроцессоров в 80-х развитие ПИД регуляторов происходило нарастающимитемпами. Основными причинами столь широкого распространения ПИДрегулятора является простота построения и промышленного использования,низкая стоимость, ясность функционирования.Однако, несмотря на долгую историю развития согласно [58] остается многопроблем в вопросах устранения интегрального насыщения, при регулировании вконтурах с гистерезисом, нелинейными объектами и транспортной задержкой;практические реализации ПИД-контроллеров не всегда содержат антиалиасныефильтры, граничная частота фильтра часто выбрана неправильно, чрезмерныйшум и внешние возмущения затрудняют настройку параметров. Проблемыусложняются тем, что в современных системах управления динамика частонеизвестна, регулируемые процессы нельзя считать независимыми, измерениясильнозашумлены,нагрузканепостоянна,технологическиепроцессынепрерывны.
Часть проблем возникает по причине сложности эксплуатации. Вомногих ПИД контроллерах дифференциальная компонента выключена толькопотому, что ее трудно правильно настроить. Пользователи пренебрегаютпроцедурой калибровки, недостаточно глубокие знания динамики регулируемогопроцесса не позволяют правильно выбрать параметры регулятора. В результате,как утверждают авторы [58], 30% регуляторов, используемых в промышленности,настроены неправильно.Несмотря на то, что к настоящему времени появилось множество точныхметодов настройки параметров ПИД регулятора, факт непригодности линейногоподходакуправлениюнелинейнымиобъектамиостаетсянеизменным.Свидетельством тому являются работы, посвященные разработкам нелинейныхПИД регуляторов, их модификации и оптимизации [29, 60, 78].В работах были найдены различные подходы к управлению нелинейнымисистемами.
Наиболее часто используемые методы приведены в Таблице 1.35Таблица 1.Часто используемые подходы к управлению нелинейными системамиМетод управленияИсточникиПД/ ПИ/ ПИД регулятор (линейное управление!)[106, 115, 129, 131, 150, 202 ]Нелинейный ПИД регуляторЛинейно-квадратичное гауссовское управление[29, 60][140](LQG control = фильтр Калмана + линейноквадратичный регулятор)Нелинейно-квадратичное гауссовское[140]управление (Non-LQG control = расширенныйфильтр Калмана + линейно-квадратичныйрегулятор)Скользящее управление (Sliding mode)[103, 129, 183]Оптимальное управление[10, 192, 202]Управление на основе нечеткой логики (Fuzzy[7, 10, 53, 117, 121, 154]state-feedback control)Адаптивное управление[109, 138]Backstepping[72, 76, 114, 155, 159, 167, 205]Метод АКАР[8, 13, 14, 17, 18, 33, 34, 43 –45, 50, 63, 64, 92, 98, 148, 149,153, 183, 199]36Обзор подходов к управлению нелинейными системами дает основаниепредполагать, что применение метода АКАР, позволяющего вводить целевыеаттракторы в фазовое пространство динамической системы, к которым неизбежноустремляются все фазовые траектории системы и на которых выполняются задачиуправления, гарантированно обеспечит требуемую динамику ротора НВК наАМП при минимальных энергетических и трудозатратах на перенастройку.1.8.Формулировка целей и задач исследованияСогласнопроведенномуанализуперспективнымнаправлениемнасегодняшний день в области создания систем НВК стала разработка насосоввспомогательного кровообращения аксиального типа на активных магнитныхопорах пульсирующего кровотока, по классификации [123, 136] относящиеся кНВК третьего поколения.Стоит подчеркнуть, что работ по исследованию динамики ротора НВКсравнительно мало, а в найденных не учитываются нелинейности, сопряженные сзазором и электромагнитными силами подшипников.Следуетотметить,чтоготовогоаппаратавспомогательногокровообращения третьего поколения, т.
е. роторного насоса без механическогоконтакта поверхностей, обеспечивающего пульсирующий поток крови воизбежание тяжелейших последствий для сосудов, клапанов сердца и внутреннихорганов на сегодняшний день на мировом рынке пока нет. Демонстрирующийнеплохие показатели продолжительности жизни пациентов (в среднем 2 года),коммерческий НВК аксиального типа Incor, наиболее широко применяемый вмедицинской практике, имеет активные магнитные опоры, но, как и все НВКроторного типа работает в режиме постоянного кровотока.Исследование показало, что созданные и внедренные в практику различныеконструкции НВК имеют достаточно много недостатков и требуют постоянногосовершенствования. В частности, разработка НВК аксиального типа на АМПпульсирующегокровотокаявляетсянаиболееперспективной.Подобные37жизнеобеспечивающие системы отличаются большим разбросом физическихпараметров и параметров работы.
Открытой остается проблема отсутствияматематических моделей нелинейной динамики ротора аксиального насосавспомогательного кровообращения на магнитных опорах. Ключевым моментомявляется обеспечение устойчивого контролируемого поведения ротора впульсирующих режимах функционирования НВК, что и определило цель даннойработы.Цель работы состоит в обеспечении: 1) устойчивой работы аксиальногонасоса вспомогательного кровообращения (НВК) на активных магнитных опорахв независимости от разброса параметров динамической системы, 2) физическиобоснованных пульсаций давления кровотока за счет совершенствованияконструкции и функционирования НВК.Для достижения указанной цели требуется решить следующие задачи:1.Построить математическую модель нелинейной динамики жесткогоротора в двух радиальных активных магнитных подшипниках с учетомгироскопических эффектов, включающую нелинейную модель магнитногоподвеса, учитывающую влияние потока крови, внешние кусочно-постоянные игармонические воздействия инерционного характера, а также возмущениявследствие неуравновешенности ротора.2.Привести математическую модель ротора насоса вспомогательногокровообращения на активных магнитных подшипниках к безразмерному виду,выделивхарактерныедляцелогоклассааппаратоввспомогательногокровообращения безразмерные комплексы (критерии подобия), позволяющиепроводить проектирование систем НВК для физически подобных конструкций.3.Оценить эффективность подходов к созданию пульсаций кровотока засчет контролируемых угловых колебаний ротора, а также за счет измененияскорости вращения ротора по критерию изменения перепада давления на выходеиз камеры насоса.4.Разработать нелинейное управление положением ротора насосавспомогательного кровообращения на активных магнитных подшипниках38гарантирующее: а) точность позиционирования ротора в заданном положении –выше 4 мкм за счет компенсации внешних инерционных воздействий кусочнопостоянного и гармонического характера, а также нежелательных возмущенийвследствие неуравновешенности ротора; б) асимптотическую устойчивостьзамкнутой системы «объект – регулятор» в области допустимых значенийфазовых координат; в) параметрическую робастность системы; г) меньшиезначения управляющих токов в сравнении с линейным управлением; д)поддержание режима пульсаций кровотока за счет специально создаваемыхугловых колебаний ротора, а также за счет изменения скорости вращения ротора.39ГЛАВА 2.
МОДЕЛЬ ДИНАМИКИ РОТОРА АКСИАЛЬНОГО НАСОСАВСПОМОГАТЕЛЬНОГО КРОВООБРАЩЕНИЯ НА АКТИВНЫХМАГНИТНЫХ ОПОРАХВ главе приведены уравнения движения ротора, вращающегося в магнитномполе радиальных активных магнитных подшипников (АМП), в условиях течениякрови, действия нежелательных внешних инерционных воздействий, возмущенийвследствие неуравновешенности.Схемаконструкцииразрабатываемогоаксиальногонасосавспомогательного кровообращения представлена на Рис.
2.1.Рис. 2.1. Конструктивные элементы проточной части аксиального насосавспомогательного кровообращения: 1 – диффузор, 2 – ротора, 3 – спрямитель402.1.Расчетная схемаСимметричный жесткий ротор аксиального насоса вспомогательногокровообращения массой m , вращается с постоянной угловой скоростью Ω в двухрадиальных активных магнитных подшипниках АМП А и АМП В, состоящих изчетырех одинаковых контуров (Рис. 2.3), которые расположены симметричнонапротив друг друга (Рис.
2.2). Движение ротора в продольном направлении,характеризующее продольные колебания ротора фиксируется постояннымимагнитами и поэтому не рассматривается.Рис. 2.2. Подвес жесткого ротора в двух радиальных подшипникахРис. 2.3. Геометрия радиального подшипника412.2.Уравнения движения ротораСистема координат Ox o y o z o связана с ротором так, что ось Oz o совпадает сгеометрической продольной осью ротора, а ось Ox o проходит через центр массротора C (Рис.
2.4). Система Cx ' y ' z ' является системой главных центральныхосей инерции ротора. Моменты инерции относительно этих осей соответственноравныIx' = I y' = IxиIz' = Iz .Таккакдостичьполногосовпадениягеометрической оси ротора с его главной осью инерции невозможно, в расчетноймодели учитывают остаточный дисбаланс после балансировки. Максимальноезначение дисбаланса и его распределение определяет стандарт ГОСТ ИСО 19401-2007 [12].
Имея межопорный ротор в соответствии со стандартом, для общностизададимсястатическимидинамическимдисбалансами.Статическаянеуравновешенность масс ротора характеризуется эксцентриситетом OC = e .Динамическая неуравновешенность характеризуется угловым параметром γ x = γ .Две одинаковые точечные массы расположены на концах ротора в плоскостиy o z o . Расчет допустимых значений остаточных дисбалансов приведен в Разделе3.3.3. В начальный момент оси подвижной системы Ox o y o z o совпадают с осяминеподвижной системы координат IXYZ .Equation Chapter 2 Section 1Рис.