Популярные услуги

Распределения Гиббса

2021-03-09СтудИзба

1.3. Распределения Гиббса

При статистическом методе для определения основной характеристики (X – совокупность координат и импульсов всех частиц системы) используются те или иные модели строения рассматриваемого тела .

Оказывается возможным нахождения общих свойств общих статистических закономерностей, которые не зависят от строения вещества и являются универсальными. Выявление таких закономерностей является основной задачей термодинамического метода описания тепловых процессов. Все основные понятия и законы термодинамики могут быть раскрыты на основе статистической теории.

Для изолированной (замкнутой) системы или системы в постоянном внешнем поле состояние называется статистически равновесным, если функция распределения  не зависит от времени.

Конкретный вид функции распределения  рассматриваемой системы зависит как от совокупности внешних параметров , так и от характера взаимодействия с окружающими телами. Под внешними параметрами в данном случае будем понимать величины, определяемые положением не входящих в рассматриваемую систему тел. Это, например, объем системы V, напряженность силового поля и т.д. Рассмотрим два наиболее важных случая:

1) Рассматриваемая система энергетически изолирована. Полная энергия частиц Е постоянна. При этом . Е можно включить в а, но выделение его подчеркивает особую роль Е. Условие изолированности системы при заданных внешних параметрах можно выразить равенством:

2)  Система не замкнута – возможен обмен энергией. В этом случае нельзя найти , она будет зависеть от обобщенных координат и импульсов частиц окружающих тел. Это оказывается возможным, если энергия взаимодействия рассматриваемой системы с окружающими телами .

При этом условии функция распределения микросостояний  зависит от средней интенсивности теплового движения окружающих тел, которую характеризуют температурой Т окружающих тел: .

Температура также играет особую роль. Она не имеет (в отличие от а) аналога в механике:  (не зависит от Т).

Рекомендуемые материалы

В состоянии статистического равновесия  не зависит от времени, неизменны и все внутренние параметры. В термодинамике такое состояние называют состоянием термодинамического равновесия. Понятия статистического и термодинамического равновесия эквивалентны.

Функция распределения микроскопической изолированной системы – микроканоническое распределение Гиббса

Случай энергетически изолированной системы. Найдем  вид функции распределения  для этого случая.

Существенную роль при нахождении при функции распределения играют лишь интегралы движения  – энергия,  – импульс системы и  – момент импульса. Лишь они являются контролируемыми.

Гамильтониану в механике отводится особая роль, т.к. именно функцией Гамильтона определяется вид уравнения движения частиц. Сохранение полного импульса и момента импульса системы при этом является следствием уравнений движения.

Поэтому выделяют именно такие решения уравнения Лиувилля, когда зависимость проявляется лишь через гамильтониан :

.

Так как  , .

Из всех возможных значений Х (совокупность координат и импульсов всех частиц системы) выделяются те, которые совместимы с условием . Константу С можно найти из условия нормировки:

,

где  – площадь гиперповерхности в фазовом пространстве , выделяемой условием постоянства энергии.

         Т.е.  – микроканоническое распределение Гиббса.

В квантовой теории равновесного состояния, так же существует микроканоническое распределение Гиббса. Введем обозначения:  – полный набор квантовых чисел, характеризующих микросостояние системы частиц,  – соответствующие допустимые значения энергии. Их можно найти, решая стационарное уравнение для волновой функции рассматриваемой системы.

Функция распределения микросостояний в таком случае будет представлять собой вероятность для системы находиться в определенном состоянии: .

Квантовое микроканоническое распределение Гиббса может быть записано в виде:

,

где  – символ Кронекера,  – из нормировки:  – число микросостояний с заданным значением энергии (а так же ). Она называется статистическим весом.

Из определения все состояния удовлетворяющие условию имеют одинаковою вероятность, равную . Таким образом, в основе квантового микроканонического распределения Гиббса лежит принцип равных априорных вероятностей.

Функция распределения микросостояний системы в термостате – каноническое распределение Гиббса.

Рассмотрим теперь систему, обменивающуюся энергией с окружающими телами. Этому подходу с термодинамической точки зрения соответствует система, окруженная очень большим термостатом с температурой T. Для большой системы (наша система + термостат) можно использовать микроканоническое распределение, поскольку такая система может считаться изолированной. Будем полагать, что рассматриваемая система составляет малую, но макроскопическую  часть большей системы с температурой Т и числом частиц в ней . То есть выполняется равенство (>>).

Будем обозначать переменные нашей системы через X, а переменные термостата через X1.

Тогда для всей системы запишем микроканоническое распределение:

.

Нас будет интересовать вероятность состояния системы из N частиц при любых возможных состояниях термостата. Эту вероятность можно найти, проинтегрировав это уравнение по состояниям термостата

 .

Функция Гамильтона системы и термостата может быть представлена в виде

.

Будем пренебрегать энергией взаимодействия между системой и термостатом по сравнению, как с энергией системы, так и с энергией термостата. Это можно сделать, поскольку энергию взаимодействия для макросистемы пропорциональна площади ее поверхности, в то время как энергия системы пропорциональна ее объему. Однако пренебрежение энергией взаимодействия по сравнению с энергией системы не означает, что оно равно нулю, в противном случае постановка задачи теряет смысл.

Таким образом, распределение вероятностей для рассматриваемой системы можно представить в виде

.

Перейдем к интегрированию по энергии термостата

,

.

Отсюда, воспользовавшись свойством d-функции

,

получим

.

Будем в дальнейшем переходить к предельному случаю, когда термостат очень велик. Рассмотрим частный случай, когда термостат представляет собой идеальный газ с N1 частицами с массой m каждая.

Найдем величину , которая представляет собой величину

,

где  представляет собой объем фазового пространства, заключенного внутри гиперповерхности . Тогда  представляет собой объем гипершарового слоя (сравните с выражением для трехмерного пространства

Для идеального газа область интегрирования дается условием

.

В результате интегрирования в указанных границах получаем объем 3N1-мерного шара с радиусом, который будет равен . Таким образом, имеем

.

Откуда имеем

.

Таким образом, для распределения вероятностей имеем

.

Перейдем теперь к пределу N1®¥ , однако, предполагая, что отношение  остается постоянным (так называемый термодинамический предел). Тогда получим

.

Принимая во внимание, что

,

получим

.

Тогда функция распределения системы в термостате может быть записана в виде

,

где С находится из условия нормировки:

.

Функция  называется классическим статистическим интегралом. Таким образом, функция распределения системы в термостате может быть представлена в виде:

 – это и есть каноническое распределение Гиббса (1901 г.).

В этом распределении Т характеризует среднюю интенсивность теплового движения – абсолютную температуру частиц окружающей среды.

         Другая форма записи распределения Гиббса

 ,

.

Далее мы увидим, чтосовпадает со свободной энергией из термодинамики (энергия Гельмгольца).

При определении  считались различными микроскопическими состояния, отличающиеся лишь перестановкой отдельных частиц. Это означает, что мы в состоянии следить за каждой частицей. Однако такое предположение приводит к парадоксу.

Выражение для квантового канонического распределения Гиббса, может быть записано по аналогии с классическим:

,

 – статистическая сумма: .

Она является безразмерным аналогом статистического интеграла. Тогда свободная энергия может быть представлена в виде:

.

Рассмотрим теперь систему, находящуюся в термостате и способную обмениваться энергией и частицами с окружением. Вывод функции распределения Гиббса для этого случая во многом аналогичен выводу канонического распределения. Для квантового случая распределение имеет вид:

– это распределение называется Большое каноническое распределение Гиббса. Здесь μ – химический потенциал системы, который характеризует изменение термодинамических потенциалов при изменении числа частиц в системе на единицу.

Z – из условия нормировки:

.

Здесь суммирование идет не только по квадратным числам, но и по всем возможным значениям числа частиц.

Другая форма записи: введем функцию , но так как ранее получено  из термодинамики , где  – большой термодинамический потенциал. В результате получим

.

Здесь  – среднее значение числа частиц.

Классическое распределение аналогично.

.

Распределения Максвелла и Больцмана

Каноническое распределение Гиббса устанавливает (при заданной ) явный вид функции распределения значений всех координат и импульсов частиц (6N-переменных). Но такая функция  очень сложна. Часто достаточно более простых функций.

Люди также интересуются этой лекцией: 25 Природоведческое направление.

Распределение Максвелла для идеального одноатомного газа. Каждую молекулу газа мы можем считать «рассматриваемой системой», принадлежащими  к термостату. Поэтому вероятность какой-либо молекуле иметь импульсы в заданных промежутках  дается каноническим распределением Гиббса: .

Заменяя импульсы скоростями, и используя условия нормировки, получим

 

 – функция распределения Максвелла по компонентам скорости. Легко получить распределение и по модулю.

В любой системе, энергия которой равна сумме энергий отдельных частиц имеет место выражение, аналогичное максвелловскому. Это распределение Максвелла-Больцмана. Опять будем считать, что «системой» является одна какая-либо частица, остальные же играют роль термостата. Тогда вероятность состояния этой избранной частицы при любом состоянии остальных дается каноническим распределением: , . По остальным величинам проинтегрировали

.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее