150237 (Динамічні процеси та теорія хаосу), страница 4

2016-07-30СтудИзба

Описание файла

Документ из архива "Динамічні процеси та теорія хаосу", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "физика" в общих файлах.

Онлайн просмотр документа "150237"

Текст 4 страницы из документа "150237"

Рис. 3.7. Схема дії голки матричного друкуючого пристрою.

У такому друкуючому пристрої молоточок прискорюється магнітною силою, і його кінетична енергія витрачається на перенесення фарби із стрічки на папір. Хендрікс використовує емпіричну залежність сили, що виникає при ударі, від відносного зсуву після удару; змінна u дорівнює відношенню зсуву до сумарної товщини стрічки і паперу:

(3.6)

де А — майдан контакту бойок і стрічки, Ер виступає в ролі жорсткості стрічки і паперу, а d — постійна, яка залежить від максимального зсуву.

Якщо бойок збуджується періодичною напругою, він і рухається по періодичному закону, поки частота струму невелика. Але із зростанням частоти бойку не вистачає часу, щоб заспокоїтися, і удари стають хаотичними (рис. 3.8).

Рис. 3.8. Зсув голки матричного друкуючого пристрою як функція часу при різних частотах сигналу, що ініціює.

Таким чином, хаотичні коливання обмежують швидкість роботи друкуючого пристрою. Один з виходів з цієї ситуації полягає в додаванні зворотному зв'язку, який подавить хаос.


3.4 Нелінійні ланцюги

Ланцюги з періодичним збудженням: хаос в ланцюзі з діодом. Ідеальний діод — це елемент ланцюга, який або проводить струм, або немає. Така поведінка з різким відключенням є сильною нелінійністю. Лава експериментів по хаотичних коливаннях була проведена за допомогою конкретного діодного елементу, званого варикапным діодом; використані електричні ланцюги подібні показаною на мал. 3.9. Можливість подвоєнь періоду указує, що явище математично описується одновимірним відображенням, яке зв'язує абсолютні значення максимального струму в ланцюзі в час (n + 1), - і n-го циклів:

. (3.7)

Рис. 3.9. а - Схема ланцюга з варикапным діодом; би - вид елементу ланцюга у фазі провідності діода; у – вид елементу ланцюга, коли діод замкнутий.

Розглянемо ланцюг, еквівалентний одному з двох лінійних ланцюгів, показаних на рис. 3.9, би, ст Кожен цикл складається з провідної і непровідної стадій. Нелінійність виникає із-за умов переходу від провідного ланцюга з напругою зсуву Vf до непровідної з постійною ємкістю. Момент переходу залежить від максимального струму |Imax|. У цій моделі на кожній стадії відомі точні вирішення диференціальних рівнянь, що описують ланцюг; невідомі постійні визначаються з умов безперервності струму і напруги у момент зміни стадій. Цей метод показаний на мал. 3.10. Ця модель краще описує фізику протікаючих процесів, чим модель з нелінійною ємкістю.

Ця ситуація служить прикладом відомої проблеми в нелінійній динаміці. Прагнення негайне пояснити хаотичність динаміки нелінійної системи викликає спокусу побудувати математичну модель, яка повторює класичні парадигми хаосу в набагато більшому ступені, чим сама фізика системи. Це було простимо під час перших відкриттів і досліджень. Але з дорослішанням нелінійної динаміки слідує більше увага обертати на математичні і фізичні основи явищ, що вивчаються. Нові пояснення хаотичних явищ можуть бути прийняті тільки в тому випадку, якщо вони прояснюють зв'язок фізичних законів (наприклад, законів Ньютона і рівнянь Максвелла) і математичних моделей.

Рис. 3.10. Порівняння розрахованого (а) і отриманого в експерименті (б) одновимірних відображень для ланцюга з варикапным діодом, показаного на мал. 3.9.

Нелінійна індуктивність. Брайант і Джеффріс досліджували ланцюг з негативним опором і нелінійною індуктивністю з гістерезисом, порушувану синусоїдальним сигналом. У цій роботі досліджувалися сполучені паралельний чотири елементи — джерело напруги, негативний опір, конденсатор і котушка, намотана на тороїдальний магнітний сердечник. Характерні значення параметрів такі: З : 7,5 мкФ, R = -500 Ом, а частота збуджуючого сигналу -200 Гц і вище. Негативний опір створювався операційним підсилювачем. Якщо N — число витків в індуктивності, А — ефективний майдан перетину сердечника, l — довжина магнітного шляху, то щільність магнітного потоку B в сердечнику описується рівнянням

, (3.8)

де H(В) — нелінійне співвідношення магнітного поля і магнітної індукції в матеріалі сердечника. У експерименті було N = 100 витків, А : 1,5-10-5 м2 і l : 0,1 м.

У такому ланцюзі спостерігаються квазіперіодичні коливання, блокування фази рухів, подвоєння періоду і хаотичні коливання.

Автономні нелінійні ланцюги. Автономні хаотичні коливання виявлені в ланцюзі з тунельним діодом, показаному на мал. 3.11, а.

Нелінійними елементами цього ланцюга є два тунельні діоди. Вольт-амперна характеристика, показана на мал. 3.11, би, явно нелінійна, і при циклічних змінах струму ID виникає петля гістерезису.

Рис. 3.11. Ланцюг з тунельним діодом, в якому можливі автономні хаотичні коливання.

За допомогою поворотних відображень були побудовані відображення Пумнкаре на псевдофазовій плоскості. Іншими словами, були складена вибірка вимірів струму

, (3.9)

де n - ціле, і побудована залежність xn від xn+1. Вибірка проводилася в ті моменти часу, коли напруга минала, убуваючи, значення 0,42В. Крім того були побудовані спектри Фурье і обчислені показники Ляпунова, що характеризують швидкість розгону близьких траєкторій.

4. Фрактальні властивості хаосу


4.1 Фрактали

Фрактали — нове поняття, введене у вживання Мандельбротом. Він же продемонстрував на обширному класі об'єктів поширеність фракталів в природі.

Хаусдорфова розмірність. Звичайна топологічна розмірність dT приписує рахунковій безлічі розмірність нуль, кривым—размерность dT = 1, поверхностям—размерность dT = 2 і так далі У багатьох випадках не може задовольнити подібне визначення, оскільки можуть бути криві, важко відмітні від плоскості. Простим прикладом зробленого твердження може служити траєкторія броунівської частки (рис. 4.1).

Рис. 4.1. Траєкторія броунівської частки

Вона має dT = 1. Проте чим більше час спостереження, тим щільніше траєкторія заповнює плоскість. Якщо відвернутися від строгих формулювань, то наступна властивість траєкторії добре відома: для довільного малого ?, визначення положення броунівської частки, що характеризує точність, на плоскості, можна вказати такий кінцевий час t(?), що траєкторія буде невідмітна від плоскості. Більш того

(4.1)

де ? — число порядку одиниці, залежне від характеру блукання частки. Можна заповнювати плоскість траєкторією деяким регулярним чином, як це має місце, наприклад, при эргодическом, але не перемішується русі.

Розмірність, введена Хаусдорфом, є зручним визначенням, що дозволяє розрізняти (до відомих меж) ступінь складності і заплутаності траєкторій. Вона вводиться таким чином.

Розгледимо деяку безліч, точки якої занурені в простір деякої розмірності dT. Покриватимемо цю безліч dT-мерными кубами, щільно упаковувавши їх. Кубів треба узяти стільки, щоб покрити ними вся дана безліч. Приклад такого покриття на плоскості наведений на мал. 4.2. Позначимо сторону куба через r і число кубів, в які потрапляє хоч би одна точка безлічі, через N(r). Тоді хаусдорфова розмірність безлічі рівна

(4.2)

Рис. 4.2. Приклад покриття безлічі крапок на плоскості квадратами з щільною упаковкою

Легко переконатися в тому, наприклад, що для відрізання прямої або гладкої кривої dH = dT = 1, а для елементу плоскості dH = dT = 2 і так далі Це означає, що в звичних простих випадках хаусдорфова і топологічна розмірності збігаються. Відмінність слід чекати для незвичайних випадків.

Визначення фрактала. Мандельброт запропонував називати фракталом безліч, для якої його хаусдорфова розмірність строго більше топологічною:

dH > dT (4.3)

Фрактали можуть бути регулярними і стохастичними.

По суті визначення (4.2) фрактальна розмірність відображає властивість масштабної інваріантності даної безлічі.

Нерівності (4.3) можна додати певний фізичний сенс. Воно характеризує ускладнення безлічі. Якщо це крива (dT = 1), то криву можна ускладнювати шляхом нескінченного числа вигинань до такого ступеня, що його фрактальна розмірність досягне два, якщо вона щільно покриє кінцевий майдан, або три, якщо крива «упакує» куб.

Реальне визначення фрактальної розмірності за допомогою, наприклад, чисельних методів насправді ніколи не проводиться на нескінченній безлічі, і число крапок, що покриваються, обмежене деякою величиной N0. Тому для кінцевого числа крапок завжди існує мінімальна відстань між ними rmin. При зменшенні r, коли зачинає виконуватися нерівність rn < rmin, величина N(rn) перестає змінюватися, досягаючи значення N0. Тому для визначення dH годиться лише деяка прямолінійна ділянка, лежача між дуже великими і дуже малими значеннями 1/r (мал. 4.3), якщо, звичайно, він існує.

Мал. 4.3. Область визначення фрактальної розмірності (суцільна пряма)

Використання фрактальної розмірності дає можливість отримати ще одну важливу характеристику складних образів. Обширний круг додатків цього поняття описаний в книзі Мандельброта. Неважко виявити, що формула (4.2) встановлює деяке співвідношення подібності між об'єктами. Це, зокрема, відразу ж виявляється на наступній властивості.

Зв'язок з ренормализационной групою. Розгледимо деяку фігуру A0 і її послідовні перетворення

(4.4)

Одночасно з операцією, що полягає, наприклад, в збільшенні деталізації фігури Ai, розгледимо зміну масштабу r на чинник а:

(4.5)

Тепер цікавитимемося деякій величиною V, що характеризує об'єм або поверхню фігури Ai. Розгледимо величину

(4.6)

Якщо існує подібність при дія оператора

(4.7)

то можна записати зв'язок між об'ємами V(An) і у вигляді

(4.8)

де d – деяка міра. У спільному випадку співвідношення подібності (4.8) може виконуватися тільки в межі n > :, тобто

. (4.9)

Звернемося тепер до послідовності фігур Ai, визначеної в (4.4), і передбачимо, що вона має нерухому точку A*. Тоді вираження (4.9) перетворюється на наступне:

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
440
Средний доход
с одного платного файла
Обучение Подробнее