150237 (Динамічні процеси та теорія хаосу)

2016-07-30СтудИзба

Описание файла

Документ из архива "Динамічні процеси та теорія хаосу", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "физика" в общих файлах.

Онлайн просмотр документа "150237"

Текст из документа "150237"

Курсова робота на тему:

Динамічні процеси та теорія хаосу.

ПЛАН

Вступ

1. Відображення і потоки

1.1. Три образи хаосу

1.2. Аттрактор Лоренца і хаос в рідині

1.3. Універсальне відображення для нелінійних коливань

1.4. Стохастичні аттрактори

2. Хаотичні коливання

2.1. Перемежана і перехідний хаос

2.2. Консервативний хаос

3. Фізичні експерименти з хаотичними системами

3.1. Хаос в пружній безперервній середі

3.2. Тривимірні пружні стрижні і струни

3.3. Хаос в матричному друкуючому пристрої

3.4. Нелінійні ланцюги

4. Фрактальні властивості хаосу

4.1. Фрактали

4.2. Фрактали і хаос

Висновок

Список використаної літератури

Вступ

Для багатьох вивчення динаміки почалося і закінчилося другим законом Ньютона F = mA. Якщо задані сили, що діють між частками, а також початкові положення і швидкості часток, то за допомогою достатнього великого комп'ютера можна передбачити рух або розвиток системи для будь-якого скільки завгодно пізнього часу. Проте поява великих комп'ютерів і швидких комп'ютерів не привела до обіцяної нескінченної передбаченості в динаміці. Було виявлено що рух деяких дуже простих динамічних систем не завжди можна передбачити на великий інтервал часу. Такі рухи були названі хаотичними, і їх дослідження привабило в динаміку деякі нові математичні ідеї.

Побутове поняття хаосу дуже древньо і часто асоціюється з безладним або некерованим фізичним станом або поведінкою людей. Хаос лякає. Правда, завжди залишається надія дізнатися потаєні сили або причини цього хаосу або пояснити, чому виявляються непередбачуваними події, на вигляд випадкові.

Отже, основна мета даної роботи полягає у вивченні моделей хаосу.

1. Відображення і потоки


1.1 Три образи хаосу

Простим прикладом динамічної моделі, що виявляє хаотичну поведінку є логістичне рівняння, або рівняння зростання популяції:

xn + 1 = axn - bx2n (1.1)

Перший член в правій частці описує зростання або народження, а нелінійний член ответствен за обмеження зростання, зв'язане, наприклад, з обмеженістю енергетичних або харчових ресурсів. Якщо нехтувати нелінійним членом (b = 0), то можна виписати явне вирішення лінійного рівняння, що виходить:

xn + 1 = axn; xn =x0 an (1.2)

Це рішення стійке при | а | < 1 і нестійкий при | а | > 1 . У останньому випадку з лінійної теорії виходить нереалістичне передбачення необмеженого зростання.

Нелінійну модель (1.1) зазвичай переписують в безрозмірному вигляді

xn + 1 = _xn (1 xn) (1.3)

При _ > 1 є дві точки рівноваги (тобто х = _х (1 - х)). Для з'ясування стійкості відображення хn + 1 = f (хn) слід обчислити величину нахилу | f’ (x) | у точці спокою. Якщо | f’ | > 1, точка спокою нестійка. При 1 < _ < 3 логістичне рівняння (1.3) має дві точки спокою: х = 0, (_ — 1) /_; при цьому початок координат — нестійка крапка, а друга точка спокою стійка.

Проте при _ = 3 нахил при x = (_ — 1)/ _ перевищує одиницю (f' = 2 - _) і обидві точки рівноваги стають нестійкими. При значеннях параметра _, увязнених між 3 і 4, це просте різницеве рівняння описує безліч багатоперіодичних і хаотичних рухів. При _ = 3 стає нестійким стаціонарне рішення, але залишається стійким бицикл або двоперіодична орбіта. Ця орбіта показана на мал. 1.1. Величинах xn повторюється через кожну ітерацію.

Рис 1.1. Можливі типи вирішень логістичного рівняння (1.3). Вгорі – стаціонарний рух з періодом 1; посередині - рух з періодом 2 і періодом 4; внизу – хаотичний рух.

При подальшому збільшенні _ двоперіодична орбіта стає нестійкою і виникає цикл з періодом 4, який унаслідок біфуркації швидко замінюється циклом з періодом 8 при ще більших значеннях _. Цей процес подвоєння періоду продовжується до тих пір, поки _ не досягає значення _: = 3,56994... . Поблизу цього значення послідовність значень параметра, при яких відбуваються подвоєння періоду, підкоряється точному закону

(1.4)

Це граничне відношення називається числом Фейгенбаума — на ім'я фізики, який виявив ці властивості даного відображення.

При значеннях _, що перевищують _:, можуть виникати хаотичні ітерації, тобто поведінка моделі на великих часах не укладається в рамки простого періодичного руху. У інтервалі _: < _ < 4 також присутні певні вузькі інтервали s_, для яких існують періодичні орбіти. Хаотична орбіта логістичного відображення показана на мал. 2 за допомогою залежності х n+ 1 від хn .

Рис. 1.2. Графічне вирішення різницевого рівняння першого порядку.

Роль цього відображення не лише в тому, що воно дає зразок хаосу. Було показано, що і інші відображення виду хп + 1 = f (xn), де f (x) — квадратична або складніша функція, поводяться приблизно так само, задовольняючи тому ж закону (1.4). Явище подвоєння періоду або регулярної зміни бифуркационного параметра називають універсальною властивістю певних класів одновимірних різницевих моделей динамічних процесів.

Подвоєння періоду і відношення Фейгенбаума (1.4) виявляються в багатьох фізичних експериментах. Це означає, що в багатьох безперервних еволюційних процесах зведення до різницевого рівняння за допомогою перетину Пумнкаре приводить до квадратичного відображення (1.1); звідси слідує важлива роль відображень в дослідженні диференціальних рівнянь.


1.2 Аттрактор Лоренца і хаос в рідині

У 1963 р. фахівець з фізики атмосфери на ім'я Е.Н. Лоренц з Массачусетсського технологічного інституту запропонував просту модель теплової конвекції в атмосфері. Рідина, що підігрівається знизу, легшає і спливає, а важча рідина опускається під дією гравітації. Такі рухи часто організовуються в конвективні валики, подібні до рухів рідини в тривимірному торі, показаному на рис. 1.3.

Рис. 1.3. Вгорі – схема ліній струму рідини в конвективному вічку при стаціонарному русі; внизу – одновимірна конвекція в кільцевій трубці під дією сили тяжіння і градієнта температури.

У математичній моделі конвекції, яку запропонував Лоренц, використовуються три змінні (х, біля, z), що описують стани системи. Змінна х пропорційна амплітуді швидкості, з якою рідина циркулює в рідкому кільці, а змінні біля і z відображають розподіл температури по кільцю. Так звані рівняння Лоренца можна формально отримати з рівняння Навьє — Стоксу, рівняння в приватних похідних механіки рідини. У безрозмірному виді рівняння Лоренца записуються таким чином:

(1.5)

Параметри _ і ? пов'язані відповідно з числами Прандтля і Релея, а третій параметр d описує геометрію системи. Відзначимо, що єдині нелінійні члени — це хz і ху в другому і третьому рівняннях.

При _ = 10 і d = 8/3 (набір параметрів, що віддається перевага фахівцями в цій області) і при ? > 1 є три положення рівноваги, з яких те, яке розташоване на початку координат, є нестійкою седловой крапкою (рис. 1.4).

Рис 1.4. Локальні схеми руху поблизу трьох крапок рівноваги для рівнянь Лоренца (1.5).


1.3 Універсальне відображення для нелінійних коливань

Структура відображення. Рівняння (1.6), званий гамильтониан породжує рівняння руху

(1.7)

де необурена частота нелінійних коливань визначається вираженням

(1.8)

Ці рівняння є диференціальними. Дискретна форма рівнянь руху у вигляді кінцевих різниць переважно для аналізу можливості появи стохастичності. Тому слід знатися на тому, як від рівнянь (1.7) перейти до їх різницевої форми і яка структура останніх.

Допустимо, що виділена деяка послідовність моментів часу t0, t1, t2 ..., і систему (1.7) удається звести до дискретної системи

яка зв'язує значення змінних (I ?) в двох послідовних моментах часу. Зручно ці рівняння записати в такій формі:

(1.9)

де індекс n опущений, межа стоїть замість індексу n + 1 і g1, g2 — функції, залежні від виду обурення. Надалі оператор (mod 2H) при фазі будемо, як правило, опускати.

Форма (1.9) є настільки спільною, що не містить ніякої інформації. У гамильтоновском випадку відображення (1.9) повинне зберігати міру, тобто повинна виконуватися умова

(1.10)

Це означає, що

Для того, щоб система (1.9) знайшла який-небудь сенс, в неї слід вкласти фізичний зміст.

Хай змінна I є дією. Її зміна має бути пов'язане з деякою неадіабатичністю руху. У адіабатичному випадку, наприклад, sI експоненціально мало. У неадіабатичному випадку вважатимемо, що зміна дії в основному відбувається в деякій області часу st, в якій порушується адіабатична інваріантність. Повна зміна дії системи накопичується підсумовуванням різних окремих змін sI. Хай Т є характерний інтервал часу між двома послідовними областями порушення адіабатичної інваріантності. Це має на увазі нерівність

T > st (1.11)

яке відразу вирішує питання про те, як природним чином ввести відображення (1.9).

Якщо виконана умова (1.11), то існує природна структура відображення (1.9). Вона включає послідовність моментів {tk}, розділених інтервалами ~T між областями, де відбувається помітна зміна дії. Рівняння відображення виходять в результаті зшивання цих змін на двох послідовних інтервалах.

Вся відмінність в змінах дії поміщена у вигляді функцій g1, g2.

Ці прості міркування дозволяють без великих втрат виключити деякі непотрібні ускладнення. По-перше, вважатимемо, що st > 0, тобто зміна дії відбувається миттєво (удар). З фізичної точки зору це означає, що часовий інтервал st зміни дії менше всіх характерних часів завдання. По-друге, рахуватимемо інтервали T між моментами tk постійними.

Гамільтонін описаної системи може бути представлений в (p, x) -пространстве у вигляді

. (1.12)

На осцилятор з гамильтонианом H0 (p, x) діють миттєві поштовхи через постійні інтервали часу Т. Между поштовхами рух є вільним і передбачається відомим.

Тому зшивання рішень на двох різних інтервалах може бути проведена точно. Покажемо, як це лается.

Виведення відображення. Повернемося знову до змінних действие—угол:

(1.13)

де V(I ?) виходить з V(х) заміною змінних. Рівняння руху (1.7) набирають вигляду

(1.14)

Хай поштовх відбувається при деякому t = t0. Визначимо -отображение таким чином:

(1.15)

Відображення виникає як послідовна дія удару і вільного руху (обертання на торі) :

(1.16)

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5057
Авторов
на СтудИзбе
456
Средний доход
с одного платного файла
Обучение Подробнее