86019 (Вычислительная математика), страница 8

2016-07-30СтудИзба

Описание файла

Документ из архива "Вычислительная математика", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "книги и методические указания", в предмете "математика" в общих файлах.

Онлайн просмотр документа "86019"

Текст 8 страницы из документа "86019"

a0 + a1 + … +am = , k = 0, 1, … , m (4.16)

Введем обозначения:

ck = , bk = .

Система (4.16) может быть записана так:

a0ck + a1ck+1 + … + ck+mam = bk, k = 0, 1, … , m. (4.17)

Перепишем систему (4.17) в развернутом виде:


c0a0 + c1a1 + c2a2… + cmam = b0

c1a0 + c2a1 + c3a2… + cm+1am = b1

(4.18)

cma0 + cm+1a1 + cm+2a2… + c2mam = bm

Матричная запись системы (4.18) имеет следующий вид:

Ca = b. (4.19)

Для определения коэффициентов ak, k = 0, 1, … , m, и, следовательно, искомого многочлена (4.14) необходимо вычислить суммы ck, bk и решить систему уравнений (4.18). Матрица C системы (4.19) называется матрицей Грама и является симметричной и положительно определенной. Эти полезные свойства используются при решении.

Погрешность приближения в соответствии с формулой (4.13) составит

= . (4.20)

Рассмотрим частные случаи m =1 и m = 2.

1. Линейная аппроксимация (m = 1).

P1(x) = a0 + a1x.

c0 = = n + 1; c1 = = ; c2 = ; (4.21)

b0 = = ; b1 = = . (4.22)

c0 c1 n+1

C = = ,

c1 c2

b = (b0, b1)T = ( , )T.

Решение системы уравнений Ca = b найдем по правилу Крамера:

a0 = , a1 = ,

где C – определитель матрицы C, аCi – определитель матрицы Ci, полученной из матрицы C заменой i-го столбца столбцом свободных членов b, i = 1, 2.

Таким образом,

a0 = , a1 = . (4.23)

Алгоритм 4.1 (Алгоритм метода наименьших квадратов. Линейная аппроксимация).

Шаг 1. Ввести исходные данные: xi, yi, i=0, 1, 2, ... , n.

Шаг 2. Вычислить коэффициенты c0, c1, b0, b1 по формулам (4.21), (4.22).

Шаг 3. Вычислить a0, a1 по формулам (4.23).

Шаг 4. Вычислить величину погрешности

1 = . (4.24)

Шаг 5. Вывести на экран результаты: аппроксимирующую линейную функцию P1(x) = a0 + a1x и величину погрешности 1.

2. Квадратичная аппроксимация (m = 2).

P2(x) = a0 + a1x + a2x2.

c0 = = n+1; c1 = = ; c2 = ; c3 = ; c4 = . (4.25)

b0 = = ; b1 = = ; b2 = . (4.26)


c0 c1 c2

C = c1 c2 c3 .

c2 c3 c4

b = (b0, b1, b2)T .

Решение системы уравнений Ca = b найдем по правилу Крамера:

ai = , i = 0, 1,

где C – определитель матрицы C, аCi – определитель матрицы Ci, полученной из матрицы C заменой i-го столбца столбцом свободных членов b.

C = c0c2c4 + 2c1c2c3 c – с c4c c0. (4.27)

b0 c1 c2

C1 = b1 c2 c3 = b0c2c4 + b2c1c3 + b1c2c3b2c b1c1c4 b0c . (4.28)

b2 c3 c4

c0 b0 c2

C2 = c1 b1 c3 = b1c0c4 + b0c2c3 + b2c1c2b1c b0c1c4 b2c0c3. (4.29)

c2 b2 c4

c0 c1 b0

C3 = c1 c2 b1 = b2c0c2 + b1c1c2 + b0c1c3b0c b2c b1c0c3. (4.30)

c2 c3 b2

a0 = , a1 = , a2 = . (4.31)

Алгоритм 4.2 (Алгоритм метода наименьших квадратов. Квадратичная аппроксимация).

Шаг 1. Ввести исходные данные: xi, yi, i=0, 1, 2, ... , n.

Шаг 2. Вычислить коэффициенты c0, c1, c2, c3, c4, b0, b1, b2, по формулам (4.25), (4.26).

Шаг 3. Вычислить C, C1, C2, C3 по формулам (4.27) – (4.30).

Шаг 4. Вычислить a0, a1, a2 по формулам (4.31).

Шаг 5. Вычислить величину погрешности

2 = . (4.32)

Шаг 5. Вывести на экран результаты : аппроксимирующую квадратичную функцию P2(x) = a0 + a1x + a2x2 и величину погрешности 2.

Пример 4.6.

Построим по методу наименьших квадратов многочлены первой и второй степени и оценим степень приближения. Значения yi в точках xi , i =0, 1, 2, 3, 4 приведены в таблице 2.3.

Таблица 4.1

i

0

1

2

3

4

xi

1

2

3

4

5

yi

–1

1

2

4

6

Вычислим коэффициенты c0, c1, c2, c3, c4, b0, b1, b2, по формулам (4.25), (4.26):

c0 = 5; c1 = 15; c2 = 55; c3 = 225; c4 = 979;

b0 = 12; b1 = 53; b2 = 235.

1. Линейная аппроксимация (m =1).

Система уравнений для определения коэффициентов a0 и a1 многочлена первой степени P2(x) = a0 + a1x + a2x2 имеет вид

5a0 + 15a1 = 12

15a0 + 55a1 = 53

По формулам (4.23) найдем коэффициенты a0 и a1:

a0 = –2.7, a1 = 1.7.

P1(x) = a0 + a1x = –2.7 + 1.7x.

2. Квадратичная аппроксимация (m =2).

Система уравнений для определения коэффициентов a0, a1 и a2 многочлена второй степени P2(x) = a0 + a1x + a2x2 имеет вид

5a0 + 15a1 + 55a2 = 12

15a0 + 55a1 + 225a2 = 53

55a0 + 225a1 + 979a2 = 235

По формулам (4.31) найдем коэффициенты a0, a1 и a2:

a0 –2.20, a1 1.27, a2 0.07.

P2(x) = a0 + a1x + a2x2 = –2.20 + 1.27x + 0.07x2.

Сравним значения, рассчитанные для функциональной зависимости, с исходными данными. Результаты приведены в табл.2.4.

Таблица 4.2

i

0

1

2

3

4

xi

1

2

3

4

5

yi

–1

1

2

4

6

P1(xi)

–1

0.7

2.4

4.1

5.8

P2(xi)

–1

0.62

2.24

4

6.9

Погрешность приближения в соответствии с формулами (4.24) и (4.32) составит

1 = = 0.245.

2 = = 0.084.

Тема 5. Численное интегрирование функций одной переменной

5.1 Постановка задачи численного интегрирования

Далеко не все интегралы можно вычислить по известной из математического анализа формуле Ньютона – Лейбница:

I = = F(b) – F(a), (5.1)

где F(x) – первообразная функции f(x). Например, в элементарных функциях не выражается интеграл . Но даже в тех случаях, когда удается выразить первообразную функцию F(x) через элементарные функции, она может оказаться очень сложной для вычислений. Кроме того, точное значение интеграла по формуле (5.1) нельзя получить, если функция f(x) задается таблицей. В этих случаях обращаются к методам численного интегрирования.

Суть численного интегрирования заключается в том, что подынтегральную функцию f(x) заменяют другой приближенной функцией, так, чтобы, во-первых, она была близка к f(x) и, во вторых, интеграл от нее легко вычислялся. Например, можно заменить подынтегральную функцию интерполяционным многочленом. Широко используют квадратурные формулы:

, (5.2)

где xi – некоторые точки на отрезке [a, b],называемые узлами квадратурной формулы, Ai – числовые коэффициенты, называемые весами квадратурной формулы, n 0 – целое число.

5.2 Метод прямоугольников

Формулу прямоугольников можно получить из геометрической интерпретации интеграла. Будем интерпретировать интеграл как площадь криволинейной трапеции, ограниченной графиком функции y = f(x), осью абсцисс и прямыми x = a и x = b (рис. 5.1).

Рис. 5.1

Разобьем отрезок [a, b] на n равных частей длиной h, так, что h = . При этом получим точки a = x0 < x1< x2 < … < xn = b и xi+1 = xi + h, i = 0, 1, … , n – 1 (рис. 5.2)

Рис. 5.2

Заменим приближенно площадь криволинейной трапеции площадью ступенчатой фигуры, изображенной на рис. 5.3.

Рис. 5.3

Эта фигура состоит из n прямоугольников. Основание i-го прямоугольника образует отрезок [xi, xi+1] длины h, а высота основания равна значению функции в середине отрезка [xi, xi+1], т е. f (рис. 5.4).

Рис. 5.4

Тогда получим квадратурную формулу средних прямоугольников:

I = Iпр = (5.3)

Формулу (5.3) называют также формулой средних прямоугольников. Иногда используют формулы

I I = , (5.4)

I I = , (5.5)

которые называют соответственно квадратурными формулами левых и правых прямоугольников.

Геометрические иллюстрации этих формул приведены на рис. 5.5 и 5.6.

Рис. 5.5

Рис. 5. 6

Оценка погрешности. Для оценки погрешности формулы прямоугольников воспользуемся следующей теоремой .

Теорема 5.1. Пусть функция f дважды непрерывно дифференцируема на отрезке [a, b]. Тогда для формулы прямоугольников справедлива следующая оценка погрешности:

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5193
Авторов
на СтудИзбе
434
Средний доход
с одного платного файла
Обучение Подробнее