86019 (Вычислительная математика), страница 7

2016-07-30СтудИзба

Описание файла

Документ из архива "Вычислительная математика", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "книги и методические указания", в предмете "математика" в общих файлах.

Онлайн просмотр документа "86019"

Текст 7 страницы из документа "86019"

Tn(x) – многочлен Тейлора:

Tn(x)= c0 + c1(x – a) + c2(x – a)2 + … + cn(x – a )n, (4.1)

Rn(x)остаточный член формулы Тейлора. Его можно записать различными способами, например, в форме Лагранжа:

Rn(x)= , a x.

Многочлен Тейлора (4.1) обладает свойством, что в точке x = a все его производные до порядка n включительно совпадают с соответствующими производными функции f, т. е.

T (a)= f(k)(a), k = 0, 1, …, n.

В этом легко убедиться, дифференцируя Tn(x). Благодаря этому свойству многочлен Тейлора хорошо приближает функцию f в окрестности точки a. Погрешность приближения составляет

|f(x) – Tn(x)| = |Rn(x)|,

т. е. задавая некоторую точность > 0, можно определить окрестность точки a и значение n из условия:

| Rn(x)| = < . (4.2)

Пример 4.1.

Найдем приближение функции y = sinx многочленом Тейлора в окрестности точки a = 0. Воспользуемся известным выражением для k-ой производной функции sinx:

( sinx)(k) = sin x + k (4.3)

Применяя последовательно формулу (4.3), получим:

f(0) = sin0 = 0;

f '(0) = cos(0) = 1;

f"(0) = –sin0 = 0;

f(2k-1)(0) = sin (2k – 1) = (–1)k – 1 ;

f(2k)(0) = 0;

f(2k+1)() = (–1)kcos .

Следовательно, многочлен Тейлора для функции y = sinx для n = 2k имеет вид:

sinx = x – + … + (1)k – 1 + R2k(x),

R2k(x) = (1)k .

Зададим = 10 –4 и отрезок [ , ]. Определим n =2k из неравенства:

|R2k(x)| = < < < = 10-4.

Т аким образом, на отрезке , функция y = sinx с точностью до = 10-4 равна многочлену 5-ой степени:

sinx = x – + = x – 0.1667x3 + 0.0083x5.

Пример 4.2.

Найдем приближение функции y = ex многочленом Тейлора на отрезке [0, 1] с точностью = 10 –5.

Выберем a = ½, т. е в середине отрезка. При этом величина погрешности в левой части (4.2) принимает минимальное значение. Из математического анализа известно, что для k-ой производной от ex справедливо равенство:

(ex)(k) = ex.

Поэтому

(ea)(k) = ea = e1/2,

Следовательно, многочлен Тейлора для функции y = ex имеет вид:

ex = e1/2 + e1/2(x – ½) + (x – ½)2 + … + (x – ½)n+ Rn(x),

При этом, учитывая, что x [0, 1], получим оценку погрешности:

|Rn(x)| < . (4.4)

Составим таблицу погрешностей, вычисленных по формуле (4.4):

n

2

3

4

5

6

Rn

0.057

0.0071

0.00071

0.000059

0.0000043

Таким образом, следует взять n = 6.

4.3 Интерполяция функции многочленами Лагранжа

Рассмотрим другой подход к приближению функции многочленами. Пусть функция y = f(x) определена на отрезке [a, b] и известны значения этой функции в некоторой системе узлов xi [a, b], i = 0, 1, … , n. Например, эти значения получены в эксперименте при наблюдении некоторой величины в определенных точках или в определенные моменты времени x0, x1, … , xn. Обозначим эти значения следующим образом: yi = f(xi), i = 0, 1, … , n. Требуется найти такой многочлен P(x) степени m,

P(x) = a0 + a1x + a2x2 + … + amxm, (4.5)

который бы в узлах xi, i = 0, 1, … , n принимал те же значения, что и исходная функция y = f(x), т. е.

P(xi) = yi, i = 0, 1, … , n. (4.6)

Многочлен (4.5), удовлетворяющий условию (4.6), называется интерполяционным многочленом.

Другими словами, ставится задача построения функции y = P(x), график которой проходит через заданные точки (xi, yi), i = 0, 1, … , n (рис. 4.1).

Рис. 4.1

Объединяя (4.5) и (4.6), получим:

a0 + a1xi + a2x + … + amx = yi, i = 0, 1, … , n. (4.7)

В искомом многочлене P(x) неизвестными являются m +1 коэффициент a0 , a1, a2, …, am. Поэтому систему (4.7) можно рассматривать как систему из n +1 уравнений с m +1 неизвестными. Известно, что для существования единственного решения такой системы необходимо , чтобы выполнялось условие: m = n. Таким образом, систему (4.7) можно переписать в развернутом виде:

a 0 + a1 x0 + a2x + … + anx = y0

a0 + a1 x1 + a2x + … + anx = y1

a0 + a1 x2 + a2x + … + anx = y2 (4.8)

.

a0 + a1 xn + a2x + … + anx = yn

Вопрос о существовании и единственности интерполяционного многочлена решает следующая теорема:

Теорема 4.1. Существует единственный интерполяционный многочлен степени n, удовлетворяющий условиям (4.6).

Имеются различные формы записи интерполяционного многочлена. Широко распространенной формой записи является многочлен Лагранжа

Ln(x) = = . (4.9)

В частности, для линейной и квадратичной интерполяции по Лагранжу получим следующие интерполяционные многочлены:

L1(x) = y0 + y1 ,

L2(x) = y0 + y1 + y2 .

Пример 4.3.

Построим интерполяционный многочлен Лагранжа по следующим данным:

x

0

2

3

5

y

1

3

2

5

Степень многочлена Лагранжа для n +1 узла равна n. Для нашего примера многочлен Лагранжа имеет третью степень. В соответствии с (4.9)

L3(x) = 1 +3 + 2 + 5 = 1 + x – x2 + x3.

Пример 4.4.

Рассмотрим пример использования интерполяционного многочлена Лагранжа для вычисления значения заданной функции в промежуточной точке. Эта задача возникает, например, когда заданы табличные значения функции с крупным шагом, а требуется составить таблицу значений с маленьким шагом.

Для функции y = sinx известны следующие данные.

x

0

/6

/3

/2

y

0

½

1

Вычислим y(0.25).

Найдем многочлен Лагранжа третьей степени:

L3(x) = 0 + +

+ 1 .

При x = 0.25 получим y(0.25) = sin 0.25 0.249.

Погрешность интерполяции. Пусть интерполяционный многочлен Лагранжа построен для известной функции f(x). Необходимо выяснить, насколько этот многочлен близок к функции в точках отрезка [a, b], отличных от узлов. Погрешность интерполяции равна |f(x) – Pn(x)|. Оценку погрешности можно получить на основании следующей теоремы.

Теорема 4.2. Пусть функция f(x) дифференцируема n +1 раз на отрезке [a, b], содержащем узлы интерполяции xi [a, b], i = 0, 1, … , n. Тогда для погрешности интерполяции в точке x [a, b] справедлива оценка:

|f(x) – Ln(x)| |n+1(x)|, (4.10)

где

Mn+1 = |f(n+1)(x)|,

n+1(x) = (x – x0)(x – x1)…. (x – xn).

Для максимальной погрешности интерполяции на всем отрезке [a, b] справедлива оценка:

|f(x) – Ln(x)| |n(x)| (4.11)

Пример 4.5.

Оценим погрешность приближения функции f(x) = в точке x = 116 и на всем отрезке [a, b], где a = 100, b = 144, с помощью интерполяционного много члена Лагранжа L2(x) второй степени, построенного с узлами x0 = 100, x2 = 144.

Найдем первую, вторую и третью производные функции f(x):

f '(x)= x – 1/2, f "(x)= – x –3/2, f'''(x)= x –5/2.

M3 = | f'''(x)| = 100 –5/2 = 10 –5.

В соответствии с (4.9) получим оценку погрешности в точке x = 116:

|L2(116)| |(116 – 100)(116 – 121)(116 – 144)| = 10 –516528 = 1.410 – 3.

Оценим погрешность приближения функции f(x) = на всем отрезке в соответствии с (4.11):

| – L2(x)| |(x – 100)(x – 121)(x –144)| 2.510–3.

4.4 Аппроксимация функций. Метод наименьших квадратов

В инженерной деятельности часто возникает необходимость описать в виде функциональной зависимости связь между величинами, заданными таблично или в виде набора точек с координатами (xi, yi), i = 0, 1, 2,... , n, где n – общее количество точек. Как правило, эти табличные данные получены экспериментально и имеют погрешности (рис. 2.5)

Рис.4.2

При аппроксимации желательно получить относительно простую функциональную зависимость (например, многочлен), которая позволила бы "сгладить" экспериментальные погрешности, вычислять значения функции в точках, не содержащихся в исходной таблице.

Эта функциональная зависимость должна с достаточной точностью соответствовать исходной табличной зависимости. В качестве критерия точности чаще всего используют критерий наименьших квадратов, т.е. определяют такую функциональную зависимость f(x), при которой

S = , (4.12)

обращается в минимум.

Погрешность приближения оценивается величиной среднеквадратического уклонения

= . (4.13)

В качестве функциональной зависимости рассмотрим многочлен

Pm(x)=a0 + a1x + a2x2+...+amxm. (4.14)

Формула (4.12) примет вид

S =

Условия минимума S можно записать, приравнивая нулю частные производные S по всем переменным a0, a1, a2, … , am. Получим систему уравнений

= – = 0, или

= 0, k = 0, 1, … , m. (4.15)

Систему уравнений (4.15) перепишем в следующем виде:

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5193
Авторов
на СтудИзбе
434
Средний доход
с одного платного файла
Обучение Подробнее