86019 (Вычислительная математика), страница 6

2016-07-30СтудИзба

Описание файла

Документ из архива "Вычислительная математика", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "книги и методические указания", в предмете "математика" в общих файлах.

Онлайн просмотр документа "86019"

Текст 6 страницы из документа "86019"

Необходимо помнить, что условие сходимости (3.28) является лишь достаточным. Его выполнение гарантирует сходимость метода простых итераций, но его невыполнение, вообще говоря, не означает, что метод расходится.

Справедлива следующая апостериорная оценка погрешности:

max|x - x | max|x x |, i = 1, 2, …, n, (3.29)

где = max |bij| i, j = 1, 2, …, n.

Правую часть оценки (3.29) легко вычислить после нахождения очередного приближения.

Критерий окончания. Если требуется найти решение с точностью , то в силу (3.29) итерационный процесс следует закончить как только на (k+1)-ом шаге выполнится неравенство:

max|x x | < , i = 1, 2, …, n. (3.30)

Поэтому в качестве критерия окончания итерационного процесса можно использовать неравенство

max|x x | < 1, i = 1, 2, …, n. (3.31)

где 1 = .

Если выполняется условие , то можно пользоваться более простым критерием окончания:

max|x x | < , i = 1, 2, …, n. (3.32)

В других случаях использование критерия (3.32) неправомерно и может привести к преждевременному окончанию итерационного процесса.

Пример 3.5.

Применим метод простой итерации Якоби для решения системы уравнений

2 0.9x1 + 1.2 x2 + 2.1x3 + 0.9x4 = 21.70

1.2x1 + 21.2 x2 + 1.5x3 + 2.5x4 = 27.46

2.1x1 + 1.5 x2 + 19.8x3 + 1.3x4 = 28.76 (3.33)

0.9x1 + 2.5 x2 + 1.3x3 + 32.1x4 = 49.72

Заметим, что метод простой итерации сходится, т. к. выполняется условие преобладания диагональных элементов (3.28):

|20.9| > |1.2 + 2.1 + 0.9|,

|21.2| > |1.2| + |1.5| + |2.5|,

|19.8| > |2.1| + |1.5| + |1.3|,

|32.1| > |0.9| + |2.5| + |1.3|.

Пусть требуемая точность = 10-3. Вычисления будем проводить с четырьмя знаками после десятичной точки.

Приведем систему к виду (3.25):

x 1 =0.0574 x2 0.1005x3 0.0431x4 + 1.0383

x2 = 0.0566x10.0708x3 0.1179x4 + 1.2953

x3 = 0.1061x10.0758 x2 0.0657x4 + 1.4525 (3.34)

x4 = 0.0280x10.0779 x20.0405x3 + 1.5489

Величина = max |bij|, i, j = 1, 2, 3,4 равна 0.1179, т. е. выполняется условие , и можно пользоваться критерием окончания итерационного процесса (3.32).

В качестве начального приближения возьмем элементы столбца свободных членов:

x = 1.0383, x = 1.2953, x = 1.4525, x = 1.5489. (3.35)

Вычисления будем вести до тех пор, пока все величины |x x |, i = 1, 2, 3, 4, а следовательно, и max|x x | не станут меньше = 10-3.

Последовательно вычисляем:

при k = 1

x =0.0574x 0.1005x0.0431x + 1.0383 = 0.7512

x = 0.0566x0.0708x 0.1179x + 1.2953 = 0.9511

x = 0.1061x0.0758 x 0.0657x + 1.4525 = 1.1423

x = –0.0280x – 0.0779x – 0.0405x + 1.5489 = 1.3601

при k = 2

x = 0.8106, x = 1.0118, x = 1.2117, x = 1.4077.

при k = 3

x = 0.7978, x = 0.9977, x = 1.1975, x = 1.3983.

при k = 4

x = 0.8004, x = 1.0005, x = 1.2005, x = 1.4003.

Вычисляем модули разностей значений x при k = 3 и k = 4:

| x – x | = 0.026, | x – x | = 0.028, | x – x | = 0.0030, | x – x | = 0.0020.

Так как все они больше заданной точности = 10-3, продолжаем итерации.

При k = 5

x = 0.7999, x = 0.9999, x = 1.1999, x = 1.3999.

Вычисляем модули разностей значений x при k = 4 и k = 5:

| x – x | = 0.0005, | x – x | = 0.0006, | x – x | = 0.0006, | x – x | = 0.0004.

Все они меньше заданной точности = 10-3, поэтому итерации заканчиваем. Приближенным решением системы являются следующие значения:

x1 0.7999, x2 0.9999, x3 1.1999, x4 1.3999.

Для сравнения приведем точные значения переменных:

x1 = 0.8, x2 = 1.0, x3 = 1.2, x4 = 1.4.

3.7 Метод Зейделя

Модификацией метода простых итераций Якоби можно считать метод Зейделя.

В методе Якоби на (k+1)-ой итерации значения x , i = 1, 2, …, n. вычисляются подстановкой в правую часть (3.27) вычисленных на предыдущей итерации значений x . В методе Зейделя при вычислении x используются значения x , x , x , уже найденные на (k+1)-ой итерации, а не x , x , …, x , как в методе Якоби, т.е. (k + 1)-е приближение строится следующим образом:


x = b12 x + b13 x + … + b1,n-1 x + b1n x + c1

x = b21 x + b23 x + … + b2,n-1 x + b2n x + c2

x = b31 x + b32 x + … + b3,n-1 x + b3n x + c3 (3.36)

x = bn1 x + bn2 x x + bn3 x x + … + bn,n-1 x + c.n

Формулы (3.36) являются расчетными формулами метода Зейделя.

Введем нижнюю и верхнюю треугольные матрицы:

0 0 0 … 0 0 b12 b13b1n

b21 0 0 … 0 0 0 b23 … b2n

B1 = b31 b32 0 … 0 и B2 = 0 0 0 … b3n .

bn1 bn2 bn30 0 0 0 … 0

Матричная запись расчетных формул (3.36) имеет вид:

xk+1= B1xk+1+ B2xk+ c. (3.37)

Так как B = B1+ B2, точное решение x* исходной системы удовлетворяет равенству:

x*= B1x*+ B2x*+ c. (3.38)

Сходимость метода Зейделя. Достаточным условием сходимости метода Зейделя является выполнение неравенства:

= max |bij|,< 1, i, j = 1, 2, …, n. (3.39)

Неравенство (3.39) означает, что для сходимости метода Зейделя достаточно, чтобы максимальный по модулю элемент матрицы B был меньше единицы.

Если выполнено условие (3.39), то справедлива следующая апостериорная оценка погрешности:

max|x - x | max|x x | i = 1, 2, …, n, (3.40)

где максимальный элемент матрицы B, 2 максимальный элемент матрицы B2.

Правую часть оценки (3.40) легко вычислить после нахождения очередного приближения.

Критерий окончания. Если требуется найти решение с точностью , то в силу (3.37) итерационный процесс следует закончить как только на (k+1)-ом шаге выполнится неравенство:

max|x x | < , i = 1, 2, …, n. (3.41)

Поэтому в качестве критерия окончания итерационного процесса можно использовать неравенство

max|x x | < 1, i = 1, 2, …, n. (3.42)

где 1 = .

Если выполняется условие , то можно пользоваться более простым критерием окончания:

max|x x | < , i = 1, 2, …, n. (3.43)

Метод Зейделя как правило сходится быстрее, чем метод Якоби. Однако возможны ситуации, когда метод Якоби сходится, а метод Зейделя сходится медленнее или вообще расходится.

Пример 3.6.

Применим метод Зейделя для решения системы уравнений (3.33) из примера 3.5. Первые шаги полностью совпадают с процедурой решения по методу Якоби, а именно: система приводится к виду (3.34), затем в качестве начального приближения выбираются элементы столбца свободных членов (3.35). Проведем теперь итерации методом Зейделя.

При k = 1

x =0.0574x 0.1005x0.0431x + 1.0383 = 0.7512

При вычислении x используем уже полученное значение x :

x = 0.0566 x 0.0708x 0.1179x + 1.2953 = 0.9674

При вычислении x используем уже полученные значения x и x :

x = 0.1061 x0.0758 x 0.0657x + 1.4525 = 1.1977

При вычислении x используем уже полученные значения x , x , x :

x = –0.0280 x – 0.0779 x – 0.0405x x + 1.5489 = 1.4037

Аналогичным образом проведем вычисления при k = 2 и k = 3. Получим:

при k = 2

x = 0.8019, x = 0.9996, x = 1.9996, x = 1.4000.

при k = 3

x = 0.80006, x = 1.00002, x = 1.19999, x = 1.40000.

Известны точные значения переменных:

x1 = 0.8, x2 = 1.0, x3 = 1.2, x4 = 1.4.

Сравнение с примером 3.5 показывает, что метод Зейделя сходится быстрее и дает более точный результат.

Тема 4. Приближение функций

4.1 Постановка задачи

Задача приближения (аппроксимации) функций заключается в том, чтобы для данной функции построить другую, отличную от нее функцию, значения которой достаточно близки к значениям данной функции. Такая задача возникает на практике достаточно часто. Укажем наиболее типичные случаи.

1. Функция задана таблицей в конечном множестве точек, а вычисления нужно произвести в других точках.

2. Функция задана аналитически, но ее вычисление по формуле затруднительно.

При решении задачи поиска приближенной функции возникают следующие проблемы.

1. Необходимо выбрать вид приближенной функции. Для приближения широко используются многочлены, тригонометрические функции, показательные функции и т. д.

2. Необходимо выбрать критерий близости исходной и приближенной функции. Это может быть требование совпадения обеих функций в узловых точках (задача интерполяции), минимизация среднеквадратического уклонения (метод наименьших квадратов) и др.

3. Необходимо указать правило (алгоритм), позволяющее с заданной точностью найти приближение функции.

4.2 Приближение функции многочленами Тейлора

Пусть функция y = f(x) определена в окрестности точки a и имеет в этой окрестности n + 1 производную. Тогда в этой окрестности справедлива формула Тейлора:

f(x) = c0 + c1(x – a) + c2(x – a)2 + … + cn(x – a )n + Rn(x) = Tn(x) + Rn(x),

где

ck =

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5193
Авторов
на СтудИзбе
433
Средний доход
с одного платного файла
Обучение Подробнее