86019 (Вычислительная математика), страница 9

2016-07-30СтудИзба

Описание файла

Документ из архива "Вычислительная математика", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "книги и методические указания", в предмете "математика" в общих файлах.

Онлайн просмотр документа "86019"

Текст 9 страницы из документа "86019"

| IIпр | h2, (5.6)

где M2 = |f "(x)|

Пример 5.1.

Вычислим значение интеграла по формуле средних прямоугольников (5.3) с шагом h = 0.1.

Составим таблицу значений функции e (табл. 5.1):

Таблица 5.1

x

e

x

e

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

1.0000000

0.9975031

0.9900498

0.9777512

0.9607894

0.9394131

0.9139312

0.8847059

0.8521438

0.8166865

0.7788008

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.7389685

0.6976763

0.6554063

0.6126264

0.5697828

0.5272924

0.4855369

0.4448581

0.4055545

0.3678794

Производя вычисления по формуле (5.3), получим:

Iпр = 0.74713088.

Оценим погрешность полученного значения. Имеем:

f "(x) = (e )" = (4x2 – 2) e .

Нетрудно убедиться, что | f "(x)| M2 = 2. Поэтому по формуле(5.4)

| IIпр | (0.1)2 0.84 10-3.

5.3 Метод трапеций

Выведем формулу трапеций так же, как и формулу прямоугольников, из геометрических соображений. Заменим график функции y = f(x) (рис.5.1) ломаной линией (рис.5.7), полученной следующим образом. Из точек a = x0, x1, x2,…, xn = b проведем ординаты до пересечения с кривой y = f(x). Концы ординат соединим прямолинейными отрезками.

Рис. 5.7

Тогда площадь криволинейной трапеции приближенно можно считать равной площади фигуры, составленной из трапеций. Так как площадь трапеции, построенной на отрезке [xi, xi+1] длины h = , равна h , то, пользуясь этой формулой для i = 0, 2, … , n – 1, получим квадратурную формулу трапеций:

I= Iтр =h = (5.7)

Оценка погрешности. Для оценки погрешности формулы трапеций воспользуемся следующей теоремой.

Теорема 5.2. Пусть функция f дважды непрерывно дифференцируема на отрезке [a, b]. Тогда для формулы трапеций справедлива следующая оценка погрешности:

| IIтр | h2, (5.8)

где M2 = |f "(x)|.

Пример 5.2.

Вычислим значение интеграла по формуле трапеций (5.7) и сравним полученный результат с результатом примера 5.1.

Используя таблицу значений функции e из примера 5.1 и производя вычисления по формуле трапеций (5.7), получим: Iтр = 0.74621079.

Оценим погрешность полученного значения. В примере (5.1) получили оценку: | f "(x)| M2 = 2. Поэтому по формуле (5.8)

IIтр | (0.1)2 1.7 10-3.

Сравнивая результаты примеров 5.1 и 5.2, видим, что метод средних прямоугольников имеет меньшую погрешность, т.е. он более точный.

5.4 Метод Симпсона (метод парабол)

Заменим график функции y = f(x) на отрезке [xi, xi+1], i = 0, 2, … , n – 1, параболой, проведенной через точки (xi, f(xi)), (x ,f(x )), (xi+1, f(xi+1)), где x - середина отрезка [xi, xi+1]. Эта парабола есть интерполяционный многочлен второй степени L2(x) с узлами xi, x , xi+1. Нетрудно убедиться, что уравнение этой параболы имеет вид:

y = L2(x) =

f(x ) + (xx ) + (x - x )2, (5.9)

где h = .

Проинтегрировав функцию (5.9) на отрезке [xi, xi+1], получим

Ii = = ( f(xi) + 4f(x ) + f(xi+1)). (5.10)

Суммируя выражение (5.10) по i = 0, 1, 2, … , n – 1, получим квадратурную формулу Симпсона (или формулу парабол):

I = IС = ( f(x0) + f(xn) + 4 + 2 ). (5.11)

Оценка погрешности. Для оценки погрешности формулы Симпсона воспользуемся следующей теоремой.

Теорема 5.2. Пусть функция f имеет на отрезке [a, b] непрерывную производную четвертого порядка f (4)(x). Тогда для формулы Симпсона (5.9) справедлива следующая оценка погрешности:

| IIС | h4, (5.12)

где M4 = | f (4)(x)|.

Замечание. Если число элементарных отрезков, на которые делится отрезок [a, b], четно , т.е. n = 2m, то параболы можно проводить через узлы с целыми индексами, и вместо элементарного отрезка [xi, xi+1] длины h рассматривать отрезок [x2i, x2i+2] длины 2h. Тогда формула Симпсона примет вид:

I (f(x0) + f(x2m) + 4 + 2 ), (5.13)

а вместо оценки (5.10) будет справедлива следующая оценка погрешности:

| IIС | h4, (5.14)

Пример 5.3.

Вычислим значение интеграла по формуле Симпсона (5.11) и сравним полученный результат с результатами примеров 5.1 и 5.2.

Используя таблицу значений функции e из примера 5.1 и производя вычисления по формуле Симпсона (5.11) , получим:

IС = 0.74682418.

Оценим погрешность полученного значения. Вычислим четвертую производную f (4)(x).

f (4)(x) = (16x4 – 48x2 + 12) e , | f (4)(x)| 12.

Поэтому

| IIС | (0.1)4 0.42 10-6.

Сравнивая результаты примеров 5.1, 5.2 и 5.3, видим , что метод Симпсона имеет меньшую погрешность, чем метод средних прямоугольников и метод трапеций.

5.5 Правило Рунге практической оценки погрешности

Оценки погрешности по формулам (5.4), (5.8) и (5.12) являются априорными. Они зависят от длины элементарного отрезка h, и при достаточно малом h справедливо приближенное равенство:

IIh Chk, (5.15)

где Ih приближенное значение интеграла, вычисленное по одной из формул (5.3), (5.5), (5.9), C 0 и k > 0 – величины, не зависящие от h.

Если уменьшить шаг h в два раза, то, в соответствии с (5.15) получим:

IIh/2 Chk ( IIh). (5.16)

Непосредственное использование оценок погрешности (5.4), (5.8) и (5.12) неудобно, так как при этом требуется вычисление производных функции f (x). В вычислительной практике используются другие оценки.

Вычтем из равенства (5.15) равенство (5.16):

Ih/2Ih Chk(2k – 1). (5.17)

Учитывая приближенное равенство (5.16), получим следующее приближенное равенство:

IIh/2 . (5.18)

Приближенное равенство (5.18) дает апостериорную оценку погрешности. Вычисление этой оценки называется правилом Рунге. Правило Рунге – это эмпирический способ оценки погрешности, основанный на сравнении результатов вычислений , проводимых с разными шагами h.

Для формул прямоугольников и трапеций k = 2, а для формулы Симпсона k = 4. Поэтому для этих формул приближенное равенство (5.18) принимает вид:

IIпр , (5.19)

IIтр , (5.20)

IIС . (5.21)

Используя правило Рунге, можно построить процедуру приближенного вычисления интеграла с заданной точностью . Нужно, начав вычисления с некоторого значения шага h, последовательно уменьшать это значения в два раза, каждый раз вычисляя приближенное значение I . Вычисления прекращаются тогда, когда результаты двух последующих вычислений будут различаться меньше, чем на .

Пример 5.4.

Найдем значение интеграла с точностью = 10-4, используя формулу трапеций и применяя вышеизложенную процедуру дробления шага. В примере 5.2 было получено значение I при h1 = 0.1, Ih =0.74621079. Уменьшим шаг вдвое: h2 = 0.05 и вычислим I = 0.74667084, 2 = ( I - I ) = (0.74667084 – 0.74621079) 1.510-4. Так как |2| > , то снова дробим шаг: h3 = 0.025, вычисляем I = 0.74678581, 2 = ( I - I ) = (0.74678581 – 0.74667084) 410-5. Поскольку |3| < , требуемая точность достигнута и I 0.7468 0.0001.

Тема 6. Численное решение дифференциальных уравнений

6.1 Постановка задачи Коши

Известно, что обыкновенное дифференциальное уравнение первого порядка имеет вид:

y' (t) = f(t, y(t)). (6.1)

Решением уравнения (6.1) является дифференцируемая функция y(t), которая при подстановке в уравнение (6.1) обращает его в тождество. На рис. 6.1 приведен график решения дифференциального уравнения (6.1). График решения дифференциального уравнения называется интегральной кривой.

Рис. 6.1

Производную y'(t) в каждой точке (t, y) можно геометрически интерпретировать как тангенс угла наклона касательной к графику решения, проходящего через эту точку, т е.: k = tg = f(t, y).

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5193
Авторов
на СтудИзбе
434
Средний доход
с одного платного файла
Обучение Подробнее