85637 (Инверсия плоскости в комплексно сопряженных координатах)

2016-07-29СтудИзба

Описание файла

Документ из архива "Инверсия плоскости в комплексно сопряженных координатах", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85637"

Текст из документа "85637"

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования
Вятский государственный гуманитарный университет

Математический факультет

Кафедра алгебры и геометрии

Выпускная квалификационная работа

Инверсия плоскости

в комплексно сопряженных координатах

Выполнила: студентка V курса

математического факультета

Дмитриенко Надежда Александровна

Научный руководитель:

старший преподаватель кафедры

алгебры и геометрии

Александр Николаевич Суворов

Рецензент:

Допущена к защите в государственной аттестационной комиссии

«___»__________2005 г. Зав. кафедрой В.М. Вечтомов

«___»___________2005 г. Декан факультета В.И. Варанкина

Киров

2005



Содержание

Введение 3

Глава 1. Основные положения теории инверсии 4

1.1. Общие сведения о комплексной плоскости 4

1.2. Определение инверсии – симметрии относительно окружности 5

1.3. Формула инверсии в комплексно сопряженных координатах 11

1.4. Неподвижные точки и окружность инверсии 11

1.5. Образы прямых и окружностей при обобщенной инверсии 12

1.6. Свойства обобщенной инверсии 19

Глава 2. Применение инверсии при решении задач

и доказательстве теорем 30

2.1. Применение инверсии при решении задач на построение 30

2.2. Применение инверсии при доказательстве 41

Заключение 43

Библиографический список 44







Введение

В наш век современных технологий так и хочется привлечь компьютер для решения задач, в частности, геометрических. Было бы замечательно, если бы от пользователя требовалось только занести в программу нужные данные, а последняя сама бы все рассчитала и выдала, к примеру, радиус и центр искомой окружности. Но вся проблема в том, что программа может работать только с координатами. И есть смысл перевода наиболее эффективных с точки зрения решения задач преобразований, в число которых входит и инверсия, на язык координат. Наиболее просто это получается на комплексной плоскости. Изучению преобразования инверсии комплексной плоскости и посвящена эта дипломная работа.

Цель работы состоит в следующем: обобщить и систематизировать основные факты об инверсии комплексной плоскости и показать применение этого преобразования при решении задач и доказательстве теорем.

Поставленная цель предполагала решение следующих задач:

  • вывод комплексной формулы инверсии;

  • доказательство основных свойств инверсии на комплексной плоскости;

  • решение нескольких задач при помощи инверсии комплексной плоскости;

  • доказательство ряда теорем при помощи инверсии комплексной плоскости.

Оказалось, что не так много специальных работ по теме. Инверсия комплексной плоскости оказалась крайне слабо освещена в литературе по сравнению с инверсией евклидовой плоскости. Поступали следующим образом: брали известный факт из евклидовой плоскости, а потом доказывали его методом комплексно сопряженных координат. Чаще всего такие доказательства были понятнее и короче, чем исходные.

Глава 1

Основные положения теории инверсии

1.1. Общие сведения о комплексной плоскости. Зададим на плоскости прямоугольную декартову систему координат 0xy. Тогда каждому комплексному числу z, представленному в алгебраической форме , можно однозначно поставить в соответствие точку М плоскости с координатами . Комплексное число z называют комплексной координатой соответствующей точки М и пишут: .

Следовательно, множество точек евклидовой плоскости находится во взаимно однозначном соответствии с множеством комплексных чисел. Эту плоскость называют плоскостью комплексных чисел.

Все необходимые сведения об этой плоскости очень хорошо даны в книге Я. П. Понарина [3]. Здесь приведем лишь некоторые формулы, взятые из того же источника, использованные в работе.

Расстояние между двумя точками с координатами а и b равно .

Уравнение прямой в канонической форме: , .

Уравнение окружности с центром в точке s и радиусом r: . Также часто используют запись , , , где центр , радиус .

Скалярное произведение векторов: .

Коллинеарность трех точек с координатами а, b и с: .

Критерий коллинеарности векторов: .

Расстояние от точки с координатой z0 до прямой , : .

Критерий параллельности двух прямых и , заданных в канонической форме: .

Критерий перпендикулярности двух прямых и , заданных в канонической форме: .

Двойное отношение четырех точек плоскости с координатами а, b, с и d: ; аргумент w равен ориентированному углу между окружностями abc и abd.

Критерий принадлежности четырех точек одной окружности или прямой: .

Критерий ортогональности окружностей , и , : .

Параллельный перенос на вектор с координатой : .

Гомотетия с центром s и коэффициентом : , .

Осевая симметрия с осью симметрии , где : .

Центральная симметрия с центром : .

1.2. Определение инверсии – симметрии относительно окружности.1

Определение 1. Углом между двумя окружностями называется угол между касательными к окружностям в точке их пересечения.

Если окружности не имеют общих точек, то угол между ними не определен.

Определение 2. Углом между окружностью S и прямой l называется угол между прямой l и касательной к окружности S в точке пересечения этой окружности с l.

Опять же, если прямая и окружность не имеют общих точек, то угол между ними не определен.

Из определения 2 следует, что окружности, центры которых лежат на данной прямой l, и только эти окружности, перпендикулярны к прямой l.

Теорема 1. Все окружности, перпендикулярные прямой l и проходящие через точку А, проходят и через точку В, симметричную точке А относительно прямой l.

Рассмотрим произвольную окружность с центром на прямой l, проходящую через точку А. Введем систему координат таким образом, что прямая l является действительной осью, а начало координат располагается в центре нашей окружности, и радиус ее равен 1.

Действительная ось имеет уравнение , и формула осевой симметрии относительно l будет . Окружность имеет уравнение .

Если точка А имеет координату а, то симметричная ей точка В будет иметь координату . Докажем, что она тоже лежит на окружности.

Действительно, поскольку А ей принадлежит, то , что и означает принадлежность точки В( ) этой окружности. ■

Если А не лежит на действительной оси, то больше общих точек у пучка окружностей, проходящих через А и перпендикулярных l, нет. Если бы была еще общая точка С, то рассматриваемые окружности проходили бы через точки А, В и С, то есть все совпадали бы.

Если А лежит на действительной оси, то у окружностей также больше нет общих точек, поскольку центр их лежит на этой оси, и если есть еще одна общая точка В (не лежащая не действительной оси, иначе окружности банально совпадут), то есть еще одна общая точка – симметричная ей, и у окружностей есть три общие точки, то есть они все совпадут, что невозможно.

Значит, если окружности перпендикулярны прямой l и проходят через точку А, и точка В симметрична точке А относительно прямой l (точки А и В могут совпадать), то это единственные общие точки этих окружностей.

Поэтому можно дать такое определение симметрии относительно прямой.

Определение 3. Точки А и В называются симметричными относительно прямой l, если все окружности, перпендикулярные прямой l и проходящие через точку А, проходят и через точку В.

Введем теперь понятие симметрии относительно окружности. Докажем сначала следующую теорему.

Теорема 2. Все окружности, перпендикулярные данной окружности Σ и проходящие через данную точку А, не лежащую на Σ, проходят одновременно и через некоторую точку В, отличную от точки А.

Рассмотрим некоторую окружность w, удовлетворяющую нашим условиям.

Введем систему координат таким образом, что начало координат располагается в центре окружности Σ и радиус ее равен 1, а точка А лежит на действительной оси.

Тогда Σ задается уравнением , w задается уравнением , где s – координата центра, r – радиус. Перпендикулярность окружностей дает равенство . Раз А лежит на w, то верно , а с учетом предыдущего равенства .

Точка А, по условию, не лежит на окружности Σ, и А лежит на действительной оси, поэтому и , то есть , откуда . Последнее число, очевидно, тоже является действительным. Тогда докажем, что точка с координатой лежит на w, то есть верно . Но это равносильно , или , что верно. Значит, точка с координатой лежит на w. Так как она отлична от точки А, а окружность w бралась произвольно, то мы нашли другую общую точку всех наших окружностей, что и требовалось. ■

Заметим, что точка А не может совпадать с центром окружности Σ, поскольку тогда касательная к w будет иметь с последней две общие точки, что невозможно.

Естественно, что других общих точек у окружностей, перпендикулярных окружности Σ и проходящих через точку А, не лежащую на Σ, нет, поскольку тогда пучок этих окружностей проходил бы через три точки, то есть все окружности бы совпадали.

Заметим также, что точки с координатами 0, а и коллинеарны. Две последние точки лежат по одну сторону от центра Σ. Причем если А лежит внутри окружности Σ, то В – вне ее, и наоборот. Также произведение расстояний от этих точек до центра окружности постоянно и равно действительному числу – квадрату радиуса данной окружности.

Если А лежит на Σ, то других общих точек у пучка таких окружностей нет. Действительно, если бы была еще одна точка, не лежащая на Σ, то по теореме была бы к тому же общей и не совпадающая с ней точка, не лежащая на окружности, то есть не совпадающая с А. Тогда у окружностей три общих точки и они все совпадут, что невозможно. Если же еще одна общая точка окружностей лежит на Σ, то можно поступить так. Точка А лежит на Σ, поэтому или . Но мы всегда можем перенаправить действительную ось в противоположную сторону, поэтому будем считать, что . Тогда из верного равенства получаем, что . Так как В лежит на w, то верно , но В лежит и на Σ, тогда последнее равенство запишется как . Получаем систему .

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5209
Авторов
на СтудИзбе
430
Средний доход
с одного платного файла
Обучение Подробнее