85637 (Инверсия плоскости в комплексно сопряженных координатах), страница 2

2016-07-29СтудИзба

Описание файла

Документ из архива "Инверсия плоскости в комплексно сопряженных координатах", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85637"

Текст 2 страницы из документа "85637"

Так как , то и левая часть первого условия не должна равняться нулю. Значит, из первого условия можно смело находить центр w. Но тогда все окружности пучка совпадут, так как радиус окружностей находится как расстояние , что невозможно.

Также заметим, что и в этом случае квадрат расстояния от точки А до центра окружности равен квадрату радиуса данной окружности.

Теперь становится естественным следующее определение:

Определение 4. Точка А называется симметричной точке В относительно окружности Σ, если каждая окружность, проходящая через А и перпендикулярная Σ, проходит через точку В.

Для каждой точки А существует только одна ей симметричная. Причем, очевидно, что если А лежит на Σ, то у нее нет отличных от нее симметричных точек, она симметрична сама себе. Также очевидно, что если А совпадает с центром окружности симметрии, то у нее нет симметричной ей точки.

Еще ясно, что произведение расстояний от центра данной окружности до симметричных точек равно квадрату радиуса этой окружности.

Если точка А симметрична точке В относительно окружности Σ, то и точка В симметрична точке А относительно окружности Σ. Это позволяет говорить о точках, симметричных относительно окружности. Совокупность всех точек, симметричных точкам некоторой фигуры F относительно окружности Σ, образует фигуру F’, симметричную фигуре F относительно окружности Σ.

Симметрия относительно прямой является предельным случаем симметрии относительно окружности, так как прямую можно рассматривать как окружность бесконечного радиуса.

Симметрия относительно окружности называется также инверсией; в этом случае окружность, относительно которой производится симметрия, называется окружностью инверсии, центр этой окружности – центром инверсии, а квадрат ее радиуса – степенью инверсии.

Инверсию можно еще определить и так:

Определение 5. Инверсией плоскости с центром в точке S и степенью инверсии k называется преобразование, которое всякую точку М плоскости, отличную от S, отображает в такую точку М’, что точка М’ лежит на луче SM и произведение .

Докажем равносильность определений 4 и 5.

45. Вспомним, что при доказательстве теоремы 2 и далее в рассуждениях мы пришли к факту, что симметричные относительно окружности точки лежат на одной прямой с центром окружности Σ и по одну сторону от него, причем произведение их расстояний до центра этой окружности равно постоянному действительному числу – квадрату радиуса окружности. Это было показано для каждой точки, отличной от центра окружности.

54. Проведем окружность с центром в точке S и радиусом . Нам дано, что . Но любая окружность, перпендикулярная проведенной и проходящая через точку М, не лежащую на проведенной окружности, проходит и через точку М’, мы это показали ранее. Значит, действительно, точки М и М’ симметричны в смысле определения 4.

Чтобы это было действительно преобразование, допускают, что точка S отображается в бесконечно удаленную точку, и наоборот (в данном случае нам удобнее мыслить бесконечно удаленную область как одну точку).

Определение 5 менее геометрично, чем предыдущее, но обладает преимуществом большей простоты. Исходя из этого определения, инверсию иногда еще называют преобразованием обратных радиусов. С этим определением связано также название «инверсия» (от латинского слова inversio – обращение).

Очевидно, слова «точка М’ лежит на луче SM и произведение » можно с успехом заменить словами «точки S, M и М’ коллинеарны и скалярное произведение векторов ». Здесь k всегда положительно. Но иногда полезно рассмотреть преобразование, которое переводит точку M в М’ так, что и точки S, M и М’ коллинеарны, но M и М’ лежат по разные стороны от точки S. Тогда, очевидно, k будет отрицательным. Такое преобразование называют инверсией с центром в точке S и отрицательной степенью. Здесь также допускают, что центр инверсии переходит в бесконечно удаленную область, и наоборот.

Вообще, говоря об инверсии, имеют в виду обычно инверсию с положительной степенью. Если знак степени инверсии может быть любым, то такое преобразование называют обобщенной инверсией. Его определение будет таким.

Определение 6. Обобщенной инверсией плоскости с центром в точке S и степенью инверсии k называется преобразование, которое всякую точку М плоскости, отличную от S, отображает в такую точку М’, что точки S, M и М’ коллинеарны и скалярное произведение векторов . При этом считают, что S переходит в бесконечно удаленную область, и наоборот.

Это преобразование инволютивное, поскольку точки М и М’ входят в формулу равноправно, а для центра инверсии и бесконечно удаленной области все очевидно.

1.3. Формула инверсии в комплексно сопряженных координатах. Найдем формулу обобщенной инверсии при задании точек комплексными числами. Пусть точкам S, M и М’ соответствуют комплексные числа s, z и z’.

По формуле скалярного произведения векторов . Коллинеарность точек S, M и М’ дает равенство . Отсюда имеем , откуда и получаем искомую формулу .

Итак, обобщенная инверсия имеет формулу или, что то же самое, . При k>0 получаем инверсию с положительной степенью, при k<0 – с отрицательной.

Но всякое ли преобразование плоскости, заданное формулой , является обобщенной инверсией? Если принять , , то достаточно потребовать, чтобы и для обобщенной и для обычной инверсии (с положительной степенью).

Значит, всякое преобразование плоскости, задаваемой формулой , есть обобщенная инверсия.

1.4. Неподвижные точки и окружность инверсии. Исследуем уравнение инверсии на неподвижные точки: для них должно выполняться равенство . Мы не рассматриваем центр инверсии и бесконечно удаленную область, так как мы доопределили, что они не остаются неподвижными, а переходят друг в друга. Тогда будет выполняться равенство .

Очевидно, что если , то все искомые точки образуют окружность с центром в точке с координатой s и радиусом . Эта окружность при называется окружностью инверсии. Если обозначить радиус окружности инверсии через R, то выполняется . И формулу инверсии для k>0 можно переписать более наглядно: .

Если степень инверсии отрицательна, то преобразование не имеет неподвижных точек (поскольку невозможно изобразить на плоскости, даже комплексной, точки, координаты которых удовлетворяют равенству ). Но иногда эту мнимую окружность также называют окружностью инверсии, ее центр расположен в центре инверсии, а радиус будет равен = = .

Так как , то, очевидно, инверсию отрицательной степени легко представить в виде коммутативной композиции инверсии с положительной степенью и центральной симметрии с общим центром в s.

1.5. Образы прямых и окружностей при обобщенной инверсии. Без ограничения общности рассуждений можно принять , и формула инверсии примет вид , более удобный для практики. Ведь нам пока не важны коэффициенты в получающейся формуле, важно, какую фигуру она описывает.

Пусть задана прямая l с уравнением , . При подстановке в это уравнение и получаем: . Умножим на , это будет равносильным преобразованием, поскольку ; получим, опуская в полученном результате штрихи: .

Если q = 0, то получаем уравнение . Так как , то умножим обе части уравнения на , получим . Это уравнение прямой, совпадающей с заданной прямой l. Если , то получаем уравнение окружности , так как . Она содержит центр инверсии, ее центр расположен в точке , а радиус равен . Заметим, что центр лежит на прямой , проходящей через центр инверсии перпендикулярно l.

Итак, прямая, содержащая центр инверсии, отображается при этой инверсии в себя; прямая, не содержащая центр инверсии, отображается в окружность, проходящую через него. Поскольку инверсия инволютивна, то окружность, содержащая центр инверсии, отображается в прямую, не содержащую его.

Возьмем теперь окружность , не проходящую через центр инверсии . Тогда выполняется . Ее образ имеет уравнение (штрихи опущены). При раскрытии скобок получим . Умножим на , это будет равносильным преобразованием, поскольку ; получим . Так как , то этим уравнением задается окружность с центром и радиусом . Она не проходит через центр инверсии. Интересно, что центр инверсии 0, центр данной окружности s и центр ее образа коллинеарны, поскольку число действительное. Но центр окружности при инверсии не переходит в центр окружности образа. Если центр данной окружности s перейдет в , то тогда должно выполняться . Поскольку , умножим на , получим равносильное равенство . Отсюда , то есть , что невозможно. Значит, предположение было неверно, и центр данной окружности не переходит в центр окружности образа.

Итак, окружность, не проходящая через центр инверсии, переходит в окружность, также не проходящую через центр инверсии.

В частности, если центр инверсии совпадает с центром окружности, то и окружность при инверсии переходит в окружность , центр которой также совпадает с центром инверсии. Итак, окружность, центр которой совпадает с центром инверсии, при этой инверсии переходит в концентрическую окружность. В частности, окружность с уравнением инвариантна.

Интересно, что центр инверсии является одновременно и центром гомотетии, переводящей одну окружность в другую. Для нашего случая гомотетия будет иметь уравнение . Убедиться в этом можно простой подстановкой: эта гомотетия переводит окружность в фигуру . Поделив обе части на , получим окружность с центром и радиусом , что и требовалось доказать.

Теперь становится ясно, что каждую окружность можно при помощи подходяще выбранной инверсии перевести в другую данную окружность или прямую. Докажем это.

Пусть даны две окружности действительного радиуса. Рассмотрим сначала случай, когда их радиусы не равны.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5259
Авторов
на СтудИзбе
421
Средний доход
с одного платного файла
Обучение Подробнее