Главная » Все файлы » Просмотр файлов из архивов » Документы » Шпаргалка - Электричество и магнетизм

Шпаргалка - Электричество и магнетизм, страница 5

2018-02-14СтудИзба

Описание файла

Документ из архива "Шпаргалка - Электричество и магнетизм", который расположен в категории "". Всё это находится в предмете "физика" из 2 семестр, которые можно найти в файловом архиве МПУ. Не смотря на прямую связь этого архива с МПУ, его также можно найти и в других разделах. Архив можно найти в разделе "к экзамену/зачёту", в предмете "физика" в общих файлах.

Онлайн просмотр документа "Шпаргалка - Электричество и магнетизм"

Текст 5 страницы из документа "Шпаргалка - Электричество и магнетизм"

I=((2 -1))/R1,2 - обобщенный закон.

R1,2=R+ r

Со знаком +  берется тогда кокда сила тока от + к - .

Со знаком -  тогда когда о - к +.

(2 -1) =U

Рассм. частный случай.

1) случай =0

I=(2 -1)/R=U/R

2) случай: замкнутая цепь

1=2 2 -1=0

3) I=/(R+r)

Зак. Ома в дифференциальной форме.

Рассм. проводник переменного сечения.

Выделим внутри элементарный объем , длинна - d , площадь поперечн. сечения dS.

dR=(d/dS)

Выделим объем соответствующей однородному участку цепи.

dI=dU/dR

dI=dU/((d/dS))

dI/dS=(1/)(dU/d)

j=(1/)E

1/ =- удельная проводимость.

_ _

J=E плотность тока в данн. точке проводника = произведению удел. Проводимости этого проводника на напряженность в этой же точке. C учетом сторонних сил для неоднородн. участка цепи зак. Ома будет:

_ _ _

j=(E+E*)

Лекция.

Дополнительные оапределения Э.Д.С.

Для замкн. цепи зак. Ома будет

I=/(R+r)

III)=IR+Ir

IR - падение внеш. напряжения.

Ir - падение внутр. напряжения.

Электродвижущая сила источника тока = сумме падений напряжения на внеш. сопр. и на внутр. участке.

Из III можно прийти к заключению что если R>>r (источник тока разомкнут) R.

IV) =IR Э.Д.С.= напряжению на клемах разомкнутого тока.

Газовый разряд.

Ионизация. Рекомбинация газов.

Газы явл. диэлектрками , и в обычных условиях не проводят эл. ток.

Все газы сост. из нейтральных атомов и малекул.

Если каким либо образом создать носители тока в газах , то они станут проводниками.(ионизация).

: УФ , R - лучи ,  - изл. ,  частицы - внешние ионизаторы.

Ионизация - это превращение нейтральных атомов и малекул в ионы.

Электроны в атомах удерживаются силами куллоновск. притяжения.

Для удаления электрона необходимо сообщить энергию равную или превышающую энергию его связи с ядром (инергия ионизации Ei).

Ei =от 5 до 20 эВ

Электрон и ион могут перемещаться под действ. эл. поля.

Свободн. электроны сталкиваясь с нейтральными атомами может войти в его состав создавая отрицательный ион.

В результате ионизации возник. 3 вида носителей тока: +ион , -ион , электрон.

Возникают два направленных друг к другу встречных потока образующие эл. ток.

Одновременно с ионизацией в газе происходит рекомбинация газа заключающаяся в исчезновении носителей тока.

Под действием внешнего ионизатора мощностью n.

(показавает сколько электронов образуется в 1 м3 за 1с.)

1) В нач. момент времени И>Р.

2) Спустя некоторое время И=Р n+=n_ устанавливается равновесие концетрации носителей тока n.

3) После выключения. И<Р

спустя время  n=0.

При выполнении ситуации 2) прохождение эл. тока через газы назв. газовыми разрядами.

Число рекомбинирующих ионов в единицу времени в 1м3 оказывается пропорциональным концентрации полож. и отр. Ионов.

nr = rn2 r - коэфф. рекомбинации.

В ситуации 2 ni =nr

ni = rn2

1) n=(ni /r)

Различают два вида газовых разрядов.

1) несомостоятельный

2) самостоятельный.

Несамостоятельный разряд - такой разряд для поддержки которого необходим внеш. ионизатор.

Самостоятельный разряд - разряд без внешнего ионизатора.

Вольтамперная характеристика газового разряда.

Зак. Ома для газового рязряда.

Прохождение тока через газы удобно изучать с помощью схемы.

Для того чтобы существовал ток для газового ионизатора нужен внеш. ионизатор.

В области 1 с увеличением U прямо пропорционально растет сила тока.

В области 1 справедлив закон Ома для газов.

В обл. 2 наблюдается отклонение от прмолин. завис. и от зак. Ома.

Обл. 3 - обл. насыщения : все носители тока падают на электроны.

Обл. 1 - обл. слабых полей.

j=j++j_ j+qэлn+<+>i

В равновесии qэл(+)=(-)=e в силу преимущества однократной ионизации.

n+=n_=n

j=en(<+>+<_>)

Опыт показывает что скор. напр. движ. зависит от вел. напряженности эл. поля и подвижности.

+=b+E

_=b_E

+,_ - подвижность носителей тока.

+>b_ b=/E

Подвижность - это физ. вел. числ. = скор. упорядоч. движ. носителей тока под действием эл. поля единичной напряженности.

[b]=м2/(Вс)

1) j=en(b++b_ )E - зак. Ома.

Произведение равновесной концентрации на элементар. заряд носителей тока на сумму подвижностей и на напр. эл. поля.

2) j=E

=en(b++b_ ) =1/

 - удельная проводимость

3) jн=enid

d - расст. между электродами.

ni - мощность ионизатора.

Ударная ионизация.

Самостоятельный газовый разряд.

При больших напр. поля свобод. электроны ускоряются до таких энергий которых достаточно для электронным ударом.

В обл. 4 в нутри газа появл. собственный источник ионизации , ударной ионизации.

Число электронов резко возрастает.

Лавинообразный процесс.

В обл. 4 наличие внеш. ионизации необходимо для поддеожания заряда.

При дальнейшем увеличении напр. поля в обл. 5 энергию достаточную дляионизации получают ионы.

В обл. 5 разряд становится самостоятельным. при этом сила тока увелич. Практически без изменения Е.

Напряженность при котор. происпереход из несомост. В самост. разряд. разряд назв. напряжением зажигания или пробоя.

Типы самостоятельных газовых разрядов.

1) тлеющий

2) искровой

3) дуговой

4) коронный

(в Трафимовой)

Зак. Джоуля - Ленца в интегральной и диффер. форме.

На внеш. сопротивлении в любой электрической цепи выделяется кол - во теплоты.

1) Q=I2Rt

За время t при протекании силы тока при протекании силы тока в нем выделится кол-во теплоты Q. (интегральная форма)

Получим зак. в диффер. форме.

Для этого рассм. внутри проводника с сопр. R элементарный объем dV=dSd

dR= d/dS

Запишем вместо 1) кол-во теплоты выдел. в этом объеме за время dt.

2) dQ=j(dS)2(d/dS)dt

(dQ/dVdt)=j2

3)т=j2 j=E

т =2E2=(1/)2E2

3) т =E2

Работа и мощьность тока, КПД тока.

=А*/q A=q=It

полная мощность источника тока P=A*/t=I

P=I( IR­+Ir)=I2R+I2r

P=Pполез+Pбезполезн

=Pполез/P

Основные положения КЭТ.

1) При кристаллизации металлов из расплава атомы их теряют электроны. При этом возникают полож. заряж. ионы и свободные электроны. Если кажд. атом теряет по эл-ну, то nат=nэл=(D/)·Na. Своб. эл-ны способны перемещаться по всему объёму металла.

2) Все металлы имеют кристаллич. структуру, в основе которой лежит кристаллич. решётка кубич. формы с положит. ионами в узлах. Таким образом решётка прозрач. для эл-нов.

3) Своб. эл-ны, оторванные от атомов, становятся коллективной собственностью всего металла. Они соверш. хаотич. тепл. движение. При этом эл-ны ведут себя подобно одноатомным мол-лам идеал. газа, подчиняясь статистике Максвелла. Своб. эл-ны принято назыв. “электронным газом”. Для эл-нов по ф-ле, известной из МКТ можно определить сред. скор. теплового движения:

Vт=(8KT)/(m)105м/c. 4) Своб. эл-ны, сталкиваясь с ионами, расположенными в узлах решётки, отдают им свою кинет. энергию. Этим обусловлено сопротивление проводников.

5) При приложении внешн. эл. поля напряжённостью E на хаотич. тепл. движение эл-нов накладывается упорядоченное движение. При этом возникает эл. ток. V « VT

Оценим V по ф-ле j=qэлnV=enV

V=j/(en); n~1029м-3, j(Cu)=107А/м2

V~10-3м/с. Суммарн. скор.VVVT

Поскольку V « VT, то VVT

Закон Ома в КЭТ

Основные положения КЭТ позволяют вывести ф-лу закона Ома как ф-цию параметров носителей тока. Для вывода используем соотношение j=enV. Пусть к проводнику приложено внешнее поле E. Своб. эл-ны придут в движение. На эл-ны будет действ. сила со стороны поля F=eE.E=consta=const.

F=eE=ma (по II з-ну Ньют.). a=(eE)/m

Для равноуск. движ. Vt=V0+at

ср. длина своб. пробега l~d расст. между ионами; -время своб. пробега.

Скорость электрона

V=Vmax=a - до столкновения с ионом

V0=0 - после столкновения с ионом

V(V0+Vmax)/2=Vmax/2=(a/2=(eE/2m;

lVlV;

VeE)/2m] · lV;

j=enV=[(e2nE)/2m]·lVз-н Ома в КЭТ

j=E ne2l) / (2mV)

Закон Джоуля-Ленца в КЭТ

Нагревание проводника, согласно КЭТ, объясняется столкновением электронов с ионами кристал. решётки. Рассчитаем кинет. энергию отдельного эл-наперед столкновением с ионом, полученную им за счёт поля: W1=(mV2max)/2.

За 1 сек. эл-н может испытывать Z соударений, где Z = 1/=V l. Если в 1 м3 число эл-нов = n, то кинет. энергия, переданная решётке всеми n эл-нами за Z столкновений каждого из них W=nZW1=T.

T=[(mV2max)/2]·n·Z=[ne2l/2mV]E2

Затруднения КЭТ

1) Температурная зависимость проводников. Согласно экспер. данным сопр. металлов увелич. с температурой по з-ну R=R0+T, где R0-сопр. при T=273K, град-1. Для ф-ла аналогична +T. Согл. опыта ~T. =2mVTl~VT. На осн. КЭТ след. T, т.е. теория расходится с опытом.

2) Теплоёмкость металлов и диэлектриков. Согл. опвтов атомная теплоёмк. металлов и диэл-ков одинакова (C=3R, где R-газовая постоянная). Это положение наз. з-н Дюлонга и Пти. Согл. КЭТ металл сост. из кристал. решётки и своб. эл-нов, а диэлектрик своб. эл-нов не имеет. Следует ожидать, что теплоёмк. металлов=т.ё. кристал. решётки+т.ё. своб. эл-нов (Cмет=R+3/2R=4,5R), чего нет на опыте.

Электронный газ, на самом деле подчиняется не классической статистике Максвелла, а квантовой статистике. Затруднения устраняются в квантовой теории проводимости. Несмотря на затруднения, КЭТ она проста и широко применяется при высоких темп-рах и малых концентрациях.

Электромагнетизм

Магн. поле. Движ. заряды в окруж. пространстве создают магн. поле, которое явл. одной из форм сущ. материи. В отличие от эл. статического поля, магнитное действует только на движ. заряды. Проводники с текущими по ним токами в окруж. пр-ве создают магн. поле. Принято различать макро- и микротоки. Макротоки-это токи, текущие по проводникам. В любом вещ-ве электроны движутся по круговым орбитам. Движение эл-нов в атоме по круговым орбитам тоже приводит к созданию магн. поля. Токи, создаваемые в веществах движущимися эл-нами называют микротоками.

Гипотеза Ампера: в каждом вещ-ве за счёт движения электронов возникают микротоки.

Для исслед. магн. поля применяют магн. стрелки (опыт Эстерда). Магн. стрелка предст. собой магнит, одетый на остриё. При пропускании тока через проводник стрелка испытывает силовое воздействие (устанавливается перпенд. проводнику). 2й метод исслед. маг. поля - с помощью плоского контура с током. Форма контура не играет роли.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5209
Авторов
на СтудИзбе
431
Средний доход
с одного платного файла
Обучение Подробнее