Главная » Все файлы » Просмотр файлов из архивов » Файлы формата DJVU » С.Б. Кадомцев - Аналитическая геометрия и линейная алгебра

С.Б. Кадомцев - Аналитическая геометрия и линейная алгебра, страница 2

DJVU-файл С.Б. Кадомцев - Аналитическая геометрия и линейная алгебра, страница 2 Линейная алгебра и аналитическая геометрия (2440): Книга - 2 семестрС.Б. Кадомцев - Аналитическая геометрия и линейная алгебра: Линейная алгебра и аналитическая геометрия - DJVU, страница 2 (2440) - СтудИзба2019-04-28СтудИзба

Описание файла

DJVU-файл из архива "С.Б. Кадомцев - Аналитическая геометрия и линейная алгебра", который расположен в категории "". Всё это находится в предмете "линейная алгебра и аналитическая геометрия" из 2 семестр, которые можно найти в файловом архиве МГУ им. Ломоносова. Не смотря на прямую связь этого архива с МГУ им. Ломоносова, его также можно найти и в других разделах. .

Просмотр DJVU-файла онлайн

Распознанный текст из DJVU-файла, 2 - страница

Суммой двух (т х и) матриц А а В назыоаетпся такал (т х и)-матрица С, что (С), = ав + б, . Теорема. Сложение матриц обладает следующими свойствами: 1' длл любых (т х и)-матриц А и В выпал»тется равенство А+ В = =В+А; 2' длл любых (т, х и)-матриц А, В и С выиолплетсл равенство А + + (В+ С) = (А+ В) + С; 3' существует единственная (т х и)-матрица О такая, что для любой (т х и)-лютрицы А выполн ется равенство А+ О = А; 4' длл любой (т х и)-матрицы А существует единственнал матрица ( — А) такая, что А + ( — А) = О.

Доказательство. Г. Выберем в матрице (А + В) произвольный элемент (А 4- В), . Имеем: (А+ В)„= а; + б;г = б,г -~- а, = (В+ А), Следовательно, А + В = В + А. 2'. (А+(В+С)); = а<и+(б<г+с< ) = (а, +бг )+см — — ((А+В)+С)<г, а значит, А+ (В + С) = (А+ В) + С. 3'. Согласно определению, (А+ В), = аи + б, . Это число равно ав тогда и только тогда, когда бв равно нулю. Следовательно, единственной матрицей О, удовлетворяющей условию А + О = А, является матрица О, все элементы которой равны нулю. ')Под словом <число» здесь и далее (в части 1) понимается, вообще говоря, комплексное число; впрочем, если угодно, можно считать, что речь идет о вещественном числе.

Матрицы 4'. Равенство (А+ В), = а; + Ь; = 0 выполняется тогда и только тогда, когда Ь,. равно ( — а; ). Следовательно, единственной матрицей ( — А), удовлетворяющей условию А + ( — А) = О, является матрица ( — А), элементы которой соответственно равны ( — а, ). Теорема доказана. Замечание. Матрица А + ( — В) называется разностью матриц А и В и обозначается так; А — В.

2. Умножение матрицы на число. Определение. Произведением (т х и)-матрицы А па число Л называется такая (т х и)-матрица В, что (В) и — — Ла, . Теорема. Умножение матрицы на число обладает следующими свойствами: Г длл любой (т х и)-матприцы А 'амесгп мссгло равенство 1 А = А; 2' для любой (т х п)-матрицы А и любых чисел Л и д имеегп место равенство Л(дА) = (Лд)А; 3' для любой (т х и)-матрицы А и любых чисел Л и р имеет место равенство (Л+ д)А = ЛА+ дА; 4' для любых (т х п~)-лютриц А и В и любого числа Л выполняется равенство Л(А+ В) = ЛА + ЛВ. Доказательство. Имеем: Г.

(1. А), = 1.а; = оси поэтому 1 А = А. 2'. (Л(дА)),1 = Л(да, ) = (Лд)ам = ((Лд)А)гм т.е. Л(дА) = (Лд)А. 3'. ((Л + д)А)О = (Л + р)а„= Лай + дан = (ЛА + дА)гн т.е. (Л+ д)А = ЛА+ дА. 4'. [Л(А+ В)),. = Л(агг + Ь, ) = Лао + ЛЬ у = (ЛА+ ЛВ) 3, а значит, Л(А+ В) = ЛА+ ЛВ. Теорема доказана. 3. Арифметическое пространство. Определение 1. Множество всех упорядоченных наборов из п чисел (аг, аз, ..., а„), для которых определены операции сложении и умиоженил па число по правилам; 1' (ам аз, ...,а„) + (ЬыЬз, ..., Ь„) = (аг -г Ь,,аг + Ьз, ...,а.„+ Ь„); 2' Л(аы аз, ..., а„) = (Лаг, Лаз,..., Ла„), называетсл арифметичсск м простпранстеом.

Если числа, о которых идет речь, вещественные, то пространство обозначается символом К", а если комплексные то символом С". Сами элементы арифметического пространства условимся обозначать одной буквой полужирного шрифта: а = (ам аз,...,а„) и называть их для краткости сгпроками, хотя, конечно, записывать их можно и в виде столбцов. Поскольку строки складываются и умножаются на число по тем же правилам, что и (1 х п)-матрицы, то сложение строк и умножение их на число удовлетворяет свойствам, указанным в теоремах пп. 1, 2. Это позволяет., в частности., сформулировать следующее определение.

1л 1. Матрицы и определители Определение 2. Су ма видо Лтаз+Лзаз+... +Льа азывается линейной комбинацией строк а; с козт)тфициентамтз Л, Если все коэффициенты равны нулю, то линейная комбинация называется тривиальной, в противном случае (т. е. если хотя бы один коэффициент отличен от нуля) -- нетривиальной. Среди всевозможных срок особую роль играют строки ет = (1, О, ..., 0), ез = (О, 1, ..., 0), ..., е„ = (О, О, ..., 1 ) (1) (т. е, строки е„у которых на т-м месте стоит 1, а в остальных местах 0), поскольку любая строка может быть представлена и притом единственным образом в виде их линейной комбинации: а = (ат, ат, ..., а„) = атет + азез ~...

+ а„е„. Строки (1) условимся в дальнейшем называть каор опатпными строОп ределение 3. Строки называютсл линейно зависимыми, если существует их нетривиальна линейная комбинаци ., равная нулевой строке о = (0,0, ..., 0); в противном случае они называются линейно независимыми. Тем самым, можно сказать так: строки называются линешю независим ми, если обращение а нулевую строку их линейной комбинации возможно лишь в том случае, когда зтаа линейная комбинация тривиальна Примером линейно независимых строк могут служить, очевидно, координатные строки (1). Докажем три теоремы о линейной зависимости строк.

Теорема 1. Если среди строк еспть тзулсаая, тпо эти стротт линейно зависимы. Доказательство. Пусть, например, ат = (О, О, ..., .0) (этого всегда можно достичь, занумеровав строки соответствующим образом). Имеем; 1ат + Оаз + ... —; Оа = (0,0, ...,0), а значит, строки ат,аз, ...,а линейно зависимы. Теорема доказана. Теорема 2. Если катте-нибудь 1с из т, строк линейно,зависи ы, то и осе строки линейно завис мы. Доказательство. Пусть, например, строки аз,аз, ...,аь линейно зависимы, т.е, существуют такие числа Лы Лз, ..., Ль, что Лтаз + + Лзаз ч- ... + Льат„. = (0,0, ...,0), причем не все Л; равны нулю. Имеем: Лзат + Лзаз +... + Льаь -1- Оат,.тз +...

+ Оа = (0,0, ...,0). Но это и означает, что строки ат, аз, ..., а линейно зависимы. Теорема доказана. Теорема 3. Если строки линейно зависимы, то одна из них равна линейной комбинации остальных. Доказательство. Если строкиат,аз, ...,а линейнозависимы,то существуют такие числа Лт, Лз, ..., Л, что Л,ат + Лзаз +... + Л а = (0,0....., 0), причем не все Л, равны нулю. Пусть, например., Лт у': О. л л, Имеем: аз = — — аз —... — — "' а, что и требовалось доказать. Определители й 2. Определители 1. Предварительные замечания. Если количество строк матрицы равно количеству ее столбцов, то матрица называется квадратной.

В этом параграфе речь пойдет о квадратных матрицах. Начнем с простого примера. Рассмотрим систему двух линейных уравнений амх1+ а,гхг — — Ь1 1 а21х1 + а22х2 — Ь2 с двумя неизвестными х1 и хг. Умножим первое уравнение на агг, второе на ( — а12) и сложим их. В результате получим: (а11агг — агга21)х1 = Ь1 агг — Ьгогг, или, если выражение в скобках не обращается в нуль, Ь1 агг — Ьг агг Х1 = а11ам — агга21 Введем обозначение: а11а12 = аыагг — аггагг. а21а22 Тогда полученный результат можно записать так: Ь, агг/ ь2 агг! Х1 а11 агг а21 агг Аналогично ам Ь1 а ь! Х2— а11 агг а21 агг Выражение (1) называется определителем второго порядка матрицы А = ) ам а" 1.

Определитель матрицы А обозначают также с1е1 А. 1,а21 агг/ Нетрудно убедиться в том, что регпение системы трех линейных уравнений а11х1 + а12х2 + а13хЗ = Ь1 а21х1 + а2222 + а23хз — Ь2 азах1 + азгхг + аззтз = Ьз ! !л 1. Матрицы и определители 12 с тремя неизвестными л„яг и лз можно записать так: с!ез Аг деС Аг с!еС Аз дезА ' дезА ' сЫА ' где 1гЬ! агг агзз! /аы Ьг а1зз! Аг = Ьг агг агз, Аг = агг Ьг агз Ьз азг азз) азг Ьз азз) /азг агг Ьгз! 1ган агг агзз! Аз = аю агг Ьг, А = ам аш агз ~ азг азг Ьз) ~ ам азг азз) аы агг агз ~азг азз ~азг азз аз~ азг азг азг азз (если, конечно, с!ос А ~ 0).

Выражение (2) называется определитпелем третьего порядка матрицы А. Определители играют весьма важную роль во многих разделах математики. Например, как мы вскоре увидим, определитель второго порядка с точностью до знака равен площади параллелограмма, построенного на векторах, координаты которых являются его строками, а обьем параллелепипеда, построенного на данных трех векторах, равен модулю определителя, строками которого являются координаты этих векторов. При этом оказывается, что формулы (1) и (2) имеют простой геометрический смысл: формула (1) выражает тот факт, что площадь параллелограмма равна произведению его основания на высоту, а формула (2) — тот факт, что объем параллелепипеда равен произведению площади его основания на высоту.

Наша ближайшая задача состоит в том, чтобы, исходя из формул (1), (2), обобщить понятие определителя матрицы на случай квадратной матрицы с произвольным количеством строк. К решению этой задачи мы и переходим. 2. Определитель. Обратимся к формуле (2). Мы видим, что определитель третьего порядка представляет собой алгебраическую сумму трех слагаемых, знаки в которой чередуюгся, причем первый знак — плюс.

Далее, каждое слагаемое представляет собой произведение элемента первой строки на определитель матрицы, полученной из исходной вычеркиванием первой строки и того столбца, из которого этот элемент взят. Отметим, что если договориться называть определителем первого порядка матрицы А = = (аг г) то единственное число азы из которого она сос гонт то формула (!) примет вид, структурно аналогичный виду формулы (2). Эти наблюдения приводят нас к следующему определению. Определение.

1' Определителем первого порядка (1 х 1)-матрицы А называетсл то единственное число аы, из которого эта матрица состоит; Определители 2' определителем и-го порядка (и х п)-матрицы А при и ) 1 называется число аы агг ... аг агг ам .. аг„ п (-1)'~ аыЬ„ в=1 (3) деФА = а„г а;г ... а„,. где Ь, —. определитель (и — 1)-го порядка матрицы, получаемой из А вычеркиванием первой строки и з-го стполбца.

Ясно, что это определение позволяет найти выражение для определи- геля любого порядка. Например, зная формулу для определителя третьего порядка, мы можем написать выражение для определителя четвертого порядка, а значит и пятого и т.д. Для краткости будем называть элементами, строками н столбцами определителя элементы, строки и столбцы его матрицы. Замечание. Как следует из формулы (3), определитель представляет собой функцию и переменных — элементов а, . Иногда, однако, 2 бывает удобнее рассматривать его как функцию Ь(ам аг, ..., а„) и переменных: нг = (аы, агг, ..., аг„), аг = (агг, агг,, агп), ..., аь = = (а„ы а„г....., а„„) — строк этого определителя. Одно нз важнейших свойств определителя состоит в следующем.

Те о р е м а. Если две строки поменять месзими, то модуль определителя не изменится, а его знак изменится на противоположный. Доказательство. Допустим, что меняются местами 1-я н гчя строки, г < 1 При п = 2 (при и = 1 нет двух различных строк) справедливость утверждения усматривается непосредственно нз формулы (1). При п > 2 возможны три случая: 1' г, г > 1; 2' г = 1, г = 2; 3' ! = 1, з > 2. Рассмотрим эти случаи отдельно. 1'. Воспользуемся методом математической индукции.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5259
Авторов
на СтудИзбе
421
Средний доход
с одного платного файла
Обучение Подробнее