Главная » Просмотр файлов » sistemnii_analiz_v_ypravlenii_V

sistemnii_analiz_v_ypravlenii_V (998781), страница 25

Файл №998781 sistemnii_analiz_v_ypravlenii_V (О.Н. Дмитриев - Системный анализ в управлении) 25 страницаsistemnii_analiz_v_ypravlenii_V (998781) страница 252015-11-25СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 25)

В эту схему укладываются все известные методы имитационного моделирования, а также метод статистических испытаний (метод Монте-Карло), для которого все перечисленные кортежи являются одноэлементными – все они представлены универсальным одноэлементным кортежом, не имеющим привязки к физическому времени.

2.7. Система методов реализации
функциональных блоков управляющей системы

Рассмотрим, какие методы наиболее часто применяются при реализации функциональных блоков в случае применения информационно-советующей информационной управленческой технологии.

Функциональные блоки управляющей системы разрабатываются в соответствии с целевыми требованиями к ним. Особенностью их реализации является то, что они должны допускать и допускают поэлементную замену и модификацию. Кроме того, они могут применяться обособленно или в функционально неполном составе для частных задач, или в новых областях. Однако во всех случаях к ним предъявляется ряд общих требований и формулируется ряд общих принципов или правил, которые главным образом касаются их стыковки.

В число таких отправных правил входят:

- обязательное достижение максимально возможной точности получаемых промежуточных и конечных результатов при условии удовлетворения исходных точностных требований, если это не влечет значимых дополнительных затрат ресурсов. С одной стороны, это требование очевидно. С другой стороны, во-первых, всякое повышение точности управленческих решений связано с увеличением расхода вычислительных ресурсов и запаздыванием подготовки обозримого управленческого решения, во-вторых, функционально неоправданным выглядит нарушение принципа равной «прозрачности» при сопряжении последовательно состыкованных блоков, когда каждый следующий функциональный блок может обладать худшими точностными характеристиками, чем предшествующие. Однако при более глубоком осмыслении первое из приведенных соображений легко нейтрализуется путем либо волюнтаристского назначения ограничения, либо более тонкого анализа баланса плюсов и минусов увеличения задержки подготовки управленческих решений при одновременном по­вышении их точности. Второе соображение (по равнопрозрачности) незыблемо только в том случае, если рассматривать реализации функциональных блоков как системы без астатизма, не содержащие внутренних механизмов генерации погрешностей и не способные развиваться или замещаться. Исследуемая область и сложность изучаемых в ней проблем не дают оснований для такого рода смелых предположений. Во всех же других случаях, когда не реализуется хотя бы один из вариантов разрешения противоречий, единственно корректно стремление добиться высшего качества исполнения каждого из функциональных блоков и их фрагментов;

- структурная стыкуемость функциональных блоков. Такая стыкуемость предусматривает обеспечение соответствия перечня и формы задания информационных связей между блоками. При этом следует ориентироваться на последовательную развертку требований от конечных блоков к начальным по технологической схеме выработки управленческого решения. Иными словами, каждый из функциональных блоков не должен содержать входов, не поддержанных (обслуженных) хотя бы одним из предыдущих. По соображениям, сформулированным выше, предпочтительно ориентироваться на реализации с наиболее богатым информационным входом;

- использование лучших компонент из числа имеющихся. Такой подход предполагает включение лучших разработок, существующих на информационном рынке, и проектирование новых только в случае непригодности первых. С учетом этого постулата основное внимание обращено на обобщение существующих разработок, анализ функциональной специфики и изложение прин­ципиальных моментов реализации новых алгоритмов;

- способность работать в автономном режиме. Данное требование подразумевает возможность полноценного использования функционального блока вне управляющей системы, для которой он проектировался (обособленное применение), или без стыковки с другими блоками (при реализации режима последовательная актуализация функциональных блоков). Технически это означает полную независимость программных реализаций блоков, что может быть реализовано тремя путями: полная оригинальность локальных программных сред, дублирование фрагментов или адресация за поддержкой к модулям, получившим статус библиотечных. Первый путь, конечно же, нерационален, а выбор между вторым и третьим либо их сочетания осуществляется чаще всего исходя из особен­ностей применяемых вычислительных средств.

Оценка текущего состояния объекта управления. В информационном технологическом процессе подготовки марке­тинговых решений первым функциональным блоком является блок оценки текущего состояния.

Понятие «текущее состояние» подразумевает: статистическую оценку совокупности величин по данным о ретроспективных наблюдениях событий и процессов и разрешение возможных неопределенностей; статистическую оценку и разрешение неопределенностей для величин, связанных с состоянием объекта управления в текущий временной период; статистический прогноз и разрешение неопределенностей для внешних воздействий, не являющихся управленческими воздействиями.

Важно обратить внимание на отмеченную вариантность: статис­тическая оценка, статистический прогноз или разрешение неопре­деленностей. Статистическая оценка связана, как правило, с обработкой результатов наблюдений за процессами, которые, с точки зрения блока оценки текущего состояния, представляют смысловой аналог испытаний. Статистический прогноз – это аналог предсказательной статистической оценки, оценки с упреждением. Потребность в разрешении неопределенностей при оценке текущего состояния объекта управления возникает либо при абсолютном отсутствии сведений вообще, либо при наличии множественности источников и неоднозначности данных. Существует и пограничный случай, когда, например, требуется восстановить статистическую характеристику в условиях локальных неопределенностей.

К числу оцениваемых величин относятся и показатели состояния. Особенностью показателей состояния является то, что они могут принадлежать к любой группе из обсуждавшихся.

Правомерно применение следующих методов оценки текущего состояния:

- «классические» статистические методы восстановления плотностей распределений и моментных характеристик непрерывных или дискретных величин. Для этих методов характерно следующее. Во-первых, они предусматривают функциональную аппроксимацию, многие частные и распространенные случаи которой ориентированы на отнесение их функции распределения к так называемым типовым. Во-вторых, они предусматривают однородность и представительность исходных выборок. В-третьих, они допускают параллельные восстановления функций распределений, оценку моментов и иных статистик. В двух последних случаях методы часто выражаются несложными формулами через элементы выборки. В-четвертых, полученные оценки являются эффективными, состоятельными и несмещенными. В смысловом плане «классические» методы основываются на косвенной или прямой оптимизации, предполагают, что по традиционным правилам составляется функция правдоподобия, которая затем подвергается оптимизации по искомым параметрам. Этот метод многократно описан не только в научной литературе для специалистов, но и во всех учебных материалах для студентов технических вузов и даже техникумов. Второй подход – через прямую аппроксимацию – встречается гораздо реже и предусматри­вает прямую аппроксимацию гистограммы функциональной формой. Этот подход сопряжен с рядом значительных проблем, в первую очередь с необходимостью выдерживать условия нормированности функций распределений и в меньшей степени – их гладкости и ми­нимизации числа перегибов;

- методы экспертного оценивания. Они позволяют решать задачи экстраполяции и интерполяции, а также получать ретроспек­тивные оценки и разрешать неопределенности в оценках. Экспертные методы проработаны довольно глубоко и описаны во многих отечественных и переводных научных изданиях;

- методы статистического прогнозирования;

- регулярные методы разрешения неопределенностей в оценках. Частично они могут быть заимствованы из группы методов обработки результатов экспертного оценивания, из современной теории расплывчатых (нечетких) множеств. Правомерно также привлекать методы, сходные в смысловом и алгоритмическом отношении с методами синергидного комбинирования прогнозов;

- методы восстановления плотностей распределения и оценки моментных характеристик по цензурированным выборкам.

Прогнозирование показателей состояния. На современном этапе доминирующей тенденцией является применение обособленных методов прогнозирования. При этом, как правило, выполняется либо разработка модификации конкретных алгоритмов, либо эвристический выбор предпочтительного из числа алгоритмов, доступных для определенных предметных областей возможного их применения. Этот подход оказывает двойственное воздействие. С одной стороны, он инициирует исследователей, стимулирует стремление к созданию наиболее эффективных методов и алгоритмов. Однако, с другой стороны, возникающая в результате разобщенность разработок приводит к перерасходу инвестируемых в разработку ресурсов или появлению алгоритмов, исключительно локализованных в функциональном плане, а также к бесполезному расходу временных и иных ресурсов на не всегда продуктивную конкурентную борьбу, взаимное вытеснение с сегмента рынка.

Наиболее конструктивный путь – применение системы алгоритмов прогнозирования, системное прогнозирование в соответствии с принципами, изложенными в разделе 2.4.

Традиционно разрабатываемым направлением повышения адекватности прогнозирования является синтез новых и совершенствование известных методов прогнозирования. Однако в ряде случаев не удается добиться желаемых результатов или они сопряжены с неприемлемыми затратами машинного времени и/или оперативной памяти. Кроме того, как, например, в рассматриваемом случае, имеется принципиальная возможность прогнозирования на основе нескольких методов, различающихся как исходными данными, так и процедурой, лежащей в основе этих методов. До недавнего времени такая множественность порождала только дополнительную неопределенность, так как в рамках прежней постановки вопрос выбора предпочтительного прогноза не поддавался корректному решению. Перспективным направлением, позволяющим разрешить указанную неопределенность, является комбинирование прогнозов, обеспечивающих их синергизм с точки зрения повышения достоверности, так как комбинирование прогнозов не требует модификации самих методов и инвариантно по отношению к ним.

Оценка значимости нежелательного рассогласования. Для оценки значимости нежелательного рассогласования, т.е. ситуации, когда, по крайней мере, для одного из будущих моментов времени хотя бы по одной из компонент показателя состояния существует значимое отклонение в нежелательном направлении (в сторону его уменьшения), используются три критерия (дифференцированно в зависимости от условий применения). Сравниваются значения заданных и прогнозируемых значений показателей состояния, так как устранение возникшего в текущий момент времени значимого рассогласования для этого момента невозможно. Если в дальнейшем такое рассогласование не прогнозируется, то реакции управляющей системы, т.е. выработки управленческих решений и реализации управленческих воздействий, не должно быть. Поэтому достаточно построить процедуру независимой оценки значимости нежелательного рассогласования для каждой компоненты показателя состояния и момента времени, которые, как правило, типизируются.

Целесообразно реализовать три варианта сопоставления заданного (в том числе, например, желаемого) значения показателя состояния с полученным прогнозом:

- для случая детерминированного прогноза или прогноза с неопределенной погрешностью;

- для случая прогноза, описываемого какой-либо типовой плотностью распределения или плотностью распределения общего вида;

- для случая прогноза, задаваемого статистической выборкой.

Анализ причин рассогласования, прежде всего нежелательного. Этот блок реализуется либо эвристически, либо на основе ретроспективного прогнозирования или ретроспективной оптимизации.

Непосредственная оптимизация управленческих решений. Непосредственная оптимизация управленческих решений может предусматривать реализацию одного из выделенных в разделе 1.11 режимов, различающихся способом генерации сравниваемых альтернатив управленческих решений.

Разумеется, на практике нередко встречаются и довольно причудливые комбинации упомянутых режимов оптимизации.

Во всех случаях управляющая система должна обеспечивать возможность:

- оценить последствия каждого из предлагаемых ею самой или ЛПР вариантов управленческого решения;

- принять на себя функции целенаправленного генератора исследуемых вариантов управленческих решений;

- компарировать (сопоставлять, сравнивать) альтернативы управленческих решений по скалярному критерию или иной формализованной системе предпочтений.

Объединение этих трех функций происходит для условий режима регулярной оптимизации, предусматривающей привлечение так на­зываемых алгоритмов оптимизации.

Методы оптимизации управленческих решений (имеется в виду алгоритмический аспект) могут быть классифицированы по:

- количеству оптимизирующих переменных – однофакторные, многофакторные;

- виду оптимизирующих переменных – величины, моментные и размаховые характеристики (статистики), распределения;

- дискретности оптимизирующих переменных – дискретные, непрерывные, смешанные;

- наличию ограничений на оптимизирующие переменные – двусторонние или односторонние ограничения на оптимизирующие переменные, сложные (например, функциональные) ограничения;

- виду оптимизируемых переменных – величины, статистики, распределения;

Характеристики

Тип файла
Документ
Размер
4,38 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее