Глава7-n_123 (967713), страница 2
Текст из файла (страница 2)
i1 = I1mּsin(ωt) и i2 = I2mּsin(ωt + ψ).
Показание прибора в этом случае определяется средним за период значением вращающего момента:
Мвр = ψ.
Здесь С — коэффициент, зависящий от числа витков, геометрических размеров и расположения катушек; I1 и I2 — действующие значения токов в обмотках; ψ— угол сдвига фаз между векторами токов I1 и I2.
При равенстве моментов (Mвр = Мпр) подвижная обмотка отклоняется на угол α и стрелка указывает на шкале числовое значение измеряемой электрической величины. Для успокоения подвижной части прибора используют воздушные демпферы. Электродинамические приборы применяют для измерения мощности, тока и напряжения в цепях переменного тока.
Приборы электродинамической системы обладают высокой точностью (обусловленной отсутствием ферромагнитных сердечников) и могут быть использованы для измерения электрических величин в цепях постоянного и переменного тока. Недостатками приборов являются чувствительность к перегрузкам и влияние посторонних магнитных полей на точность измерений. Приборы этой системы используются в качестве амперметров, вольтметров, и ваттметров.
7.1.4. Индукционная система.
Принцип действия индукционных приборов поясним на упрощенной схеме устройства однофазного счетчика переменного тока (рис. 7.5,а—в).
О сновными элементами прибора являются: трехстержневой электромагнит 1 с обмоткой 2, имеющей большое число витков из тонкой проволоки; П-образный электромагнит 3 с обмоткой 4, имеющей небольшое число витков из толстой проволоки; алюминиевый диск 5, который может вращаться вокруг оси 6.
Обмотка 2 включается параллельно измеряемой цепи, а обмотка 4 — последовательно с этой цепью.
Т ок I1 в катушке 4 образует магнитный поток Ф1 который дважды пересекает алюминиевый диск 5. Ток I2 в обмотке 2 создает магнитный поток, часть которого Ф2 также пронизывает диск 5 (поток Ф2 замыкается по стальной скобе 7).
Ток I1 и напряжение U сдвинуты по фазе на угол j, значение которого определяется характером нагрузки, присоединенной к линии Л. Ток I2 благодаря большой индуктивности обмотки 2 отстает по фазе от напряжения U на угол, близкий к 90°. Магнитные потоки Ф1 и Ф2 совпадают по фазе с вызвавшими их токами I1 и I2 (рис.7.5, г). Поток Ф1 пропорционален току нагрузки I1, а поток Ф2 — напряжению сети.
Переменные потоки Ф1, и Ф2 индуктируют в алюминиевом диске ЭДС E1 и Е2, отстающие по фазе от этих потоков на 90°. ЭДС E1 и E2 вызывают в диске токи IД1, и IД2 которые можно считать совпадающими по фазе с вызвавшими их ЭДС. Примерная картина распределения токов в диске показана на рис.7.5,б.
Мгновенное значение силы Fэм действующей на элемент диска с током iд, равно
Fэм = kФiд = kФmsin(ωt)ּIдmsin(ωt +ψ),
где k — коэффициент пропорциональности; ψ — угол сдвига фаз между потоком Ф и током Iд.
Среднее за период значение силы Fэм
Fср= эм dt =
ωtּsin(ωt+ ψ)dt = k2ФIдcos ψ. (7.1)
Из векторной диаграммы видно, что углы между потоком Ф1 и током Iд1 и между потоком Ф2 и током Iд2 равны 90°, угол между потоком Ф1 и током Iд2 составляет (180° — j), а угол -между потоком Ф2 и током Iд1 равен j.
Учитывая это и исходя из (7.1), находим, что силы взаимодействия магнитных потоков Ф1 и Ф2 с токами Iд1 и Iд2 создают результирующий момент, вращающий диск:
Мвр = С1Ф1Iд2 cos(180˚− j) + С2Ф2Iд1 cos j =
= C 'Ф1Ф2 cos(180˚− j) + С 'Ф1Ф2 cos j = CUI1cos j = CP, (7.2)
где C', С1, С2 — коэффициенты пропорциональности; Р — активная моность,птребляемая нагрузкой.
Из (7.2) следует, что вращающий момент, действующий на диск счетчика, пропорционален мощности Р.
Для создания противодействующего момента предусмотрен постоянный магнит 8 (рис.7.5а и б). При вращении диска поле постоянного магнита, индуктирует в нем вихревые токи, которые в соответствии с законом Ленца противодействуют вращению диска. Поскольку значение вихревых токов пропорционально частоте вращения диска п, противодействующий момент также пропорционален n:
Мпр = Соn.
Так как вращающий момент Мвр при установившейся частоте вращения диска уравновешивается противодействующим моментом Мпр, из формул (7.1) и (7.2) следует, что частота вращения диска пропорциональна мощности Р:
.
Число оборотов N, которое диск сделает за время t, будет пропорционально энергии W, полученной из сети нагрузкой за это же время:
N = .
Величина W/N=C0/C называется постоянной счетчика и представляет собой электрическую энергию, соответствующую одному обороту диска.
Счетчик снабжается счетным механизмом, связанным червячной передачей с осью диска. Измеряемая счетчиком энергия отсчитывается по показаниям счетного механизма.
7.2.Погрешности измерений. Номинальные величины и постоянные приборов. Условные обозначения электроизмерительных приборов.
7.2.1. Погрешности измерений и электроизмерительных приборов.
Показания электроизмерительных приборов несколько отличаются от действительных значений измеряемых величин. Это вызвано непостоянством параметров измерительной цепи (изменение температуры, индуктивности и т. п.), несовершенством конструкции измерительного механизма (наличие трения и т. д.) и влиянием внешних факторов (внешние магнитные и электрические поля, изменение температуры окружающей среды и т. д.).
Разность между измеренным Аи и действительным Ад значениями контролируемой величины называется абсолютной погрешностью измерения:
ΔА = Аи─ Ад.
Если не учитывать значения измеряемой величины, то абсолютная погрешность не дает представления о степени точности измерения. Действительно, предположим, что абсолютная погрешность при измерении напряжения составляет DU = 1 В. Если указанная погрешность получена при измерении напряжения в 100 В, то измерение произведено с достаточной степенью точности. Если же погрешность DU = 1 В получена при измерении напряжения в 2 В, то степень точности недостаточна. Поэтому погрешность измерения принято оценивать не абсолютной, а относительной погрешностью.
Относительная погрешность измерения представляет собой отношение абсолютной погрешности к действительному значению измеряемой величины, выраженное в процентах:
. (7.3)
Поскольку действительное значение измеряемой величины при измерении не известно, для определения ΔU и γ можно воспользоваться классом точности прибора, представляющим собой обобщенную характеристику средств измерений, определяемую предельными допустимыми погрешностями.
Амперметры, вольтметры и ваттметры подразделяются на восемь классов точности: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. Цифра, обозначающая класс точности, определяет наибольшую положительную или отрицательную основную приведенную погрешность, которую имеет данный прибор.
Под основной приведенной погрешностью прибора понимают абсолютную погрешность, выраженную в процентах по отношению к номинальной величине прибора:
(7.4)
Например, прибор класса точности 0,5 имеет γnp= ±0,5%. Погрешность γпр называется основной, так как она гарантирована в нормальных условиях, под которыми понимают температуру окружающей среды 20 °С, отсутствие внешних магнитных полей, соответствующее положение прибора и т. д. При других условиях возникают дополнительные погрешности. Погрешность γпр называется приведенной, потому что абсолютная погрешность независимо от значения измеряемой величины выражается в процентах по отношению к постоянной величине Аном.
Сравнивая (7.3) и (7.4), нетрудно получить
. (7.5)
Из (7.5) следует, что относительная погрешность измерения зависит от действительного значения измеряемой величины и возрастает при ее уменьшении. Вследствие этого надо стараться по возможности не пользоваться при измерении начальной частью шкалы прибора. В случае необходимости измерения малых величин следует применять другие приборы.
Пример 7.1. Номинальное напряжение вольтметра Uном= 150 В, класс точности 1,5. С помощью вольтметра измерено напряжение U = 50 В.
Определить абсолютную и относительную величину погрешности измерения, а также действительное значение напряжения.
Решение. Абсолютная погрешность измерения
.
Действительное значение напряжения может лежать в пределах
Uд = Uи ─ ΔU = (50 ± 2,25) В.
Относительная погрешность измерения
7.2.2. Номинальные величины приборов.
Наибольшие значения напряжений, токов и мощностей, которые могут быть измерены перечисленными приборами называются номинальными напряжениями Uном, токами Iном и мощностями Pном соответственно вольтметров, амперметров и ваттметров.