Главная » Просмотр файлов » ГЛАВА 9 Проектирование асинхронных машин

ГЛАВА 9 Проектирование асинхронных машин (967515), страница 21

Файл №967515 ГЛАВА 9 Проектирование асинхронных машин (Копылов И.П., Клоков Б.К., Морозкин В.П., Токарев Б.Ф. Проектирование электрических машин) 21 страницаГЛАВА 9 Проектирование асинхронных машин (967515) страница 212013-10-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 21)

9.10.2. Индуктивные сопротивления обмоток двигателей

с фазными роторами

Индуктивные сопротивления обмоток статора и ротора двигате­лей с фазными роторами рассчитывают по формуле

x = 1,58 (9.152)

здесь расчетная длина l'δ при наличии радиальных вентиляционных каналов для обмотки статора

l'δ = l1 - 0,5 nk bk (9.153)

и для обмотки ротора

l'δ = l2 - 0,5 nk bk (9.154)

при отсутствии радиальных каналов в этих формулах nк = 0.

Входящие в (9.152) коэффициенты магнитной проводимости λп, λл и λд обмоток определяют следующим образом.

Коэффициент магнитной проводимости пазового рассеяния рас­считывают по формулам, приведенным в табл. 9.26, в зависимости от конфигурации паза и расположения в нем проводников обмотки (рис. 9.50). В этих формулах значения коэффициентов kβ и k'β зависят от укорочения шага обмотки β, которое определяют по расчетному шагу обмотки (см. гл. 3) β = урасч / τ.

При β = 1

kβ = k'β = 1 (9.155)

При обмотке с укорочением 2/3 ≤ β≤ 1

k'β = 0,25 (1 + 3β); (9.156)

при укорочении 1/3 ≤ β ≤ 2/3

k'β = 0,25 (6β - 1). (9.157)

Коэффициент

kβ = 0,25 (1 + 3 k'β). (9.158)

Рис. 9.50. К расчету коэффициентов магнитной проводимости пазового рассеяния

фазных обмоток:

а—е — обмотки статора; ж—и — обмотки фазного ротора

Таблица 9.26. Расчетные формулы для определения коэффициентов

магнитной проводимости пазового рассеяния обмоток статора и

фазного ротора асинхронных двигателей

Рисунок

Тип обмотки

Расчетные формулы

9.50, а

Двухслойная

Однослойная

9.50, б

Двухслойная

9.50, в,г,з

Двухслойная и

одно­слойная

9.50, д,е,и

То же

9.50, ж

Двухслойная

Коэффициент магнитной проводимости лобового рассеяния

λл = 0,34 (lл – 0,64 β τ ) (9.159)

где q и lл — число пазов на полюс и фазу и длина лобовой части витка обмотки; β = урасч / τ — укорочение шага обмотки, для которой прово­дится расчет, т. е. обмотки статора или фазного ротора.

Коэффициент магнитной проводимости дифференциального рассеяния для обмоток статора и фазного ротора

(9.160)

Значение коэффициента ξ зависит от числа q, укорочения шага обмотки и размерных соотношений зубцовых зон и воздушного зазора.

Ниже приводятся формулы, в которые при расчете ξ, для обмо­ток статора или ротора следует подставлять данные обмоток и зубцовых зон соответственно статора или ротора.

Для обмоток статора и ротора при q, выраженном целым чис­лом (q ≥ 2), для обмотки с β = 1

ξ = 2 + 0,022 q2k2об(1 + Δz); (9.161)

при укороченном шаге обмотки (β < 1)

ξ = k''q2 + k'βk2об(1 + Δz); (9.162)

при дробном (q ≥ 2)

ξ = k''q2 + 2k''β – k2об( + Δz); (9.163)

при дробном q, значение которого 1 < q < 2,

ξ = k''q2 + 2k''β k2об( + Δz); (9.164)

В этих формулах коэффициенты Δz, k', k" и k"β определяют по кривым, приведенным на рис. 9.51. Для определения k"β и k' необ­ходимо найти дробную часть числа q, равную c/d (дробное число q = b + c/d, где b — целое число, c/d < 1 — дробная часть числа q), коэффициент k'β — по (9.156) или (9.157).

Индуктивное сопротивление обмотки фазного ротора, опреде­ленное по (9.152), должно быть приведено к числу витков обмотки статора:

х'2 = v12 x2, (9.165)

где v12 — коэффициент приведения сопротивлений по (9.151).

9.10.3. Сопротивления обмоток двигателей с короткозамкнутыми роторами

Активное сопротивление фазы обмотки статора двигателя с короткозамкнутым ротором рассчитывается так же, как и для двигате­ля с фазным ротором.

Активное сопротивление фазы короткозамкнутого ротора опреде­ляется следующим образом. Как говорилось выше, за фазу обмотки, выполненной в виде беличьей клетки, принимают один стержень и два участка замыкающих колец (см. рис. 9,35). Токи в стержнях и за­мыкающих кольцах различны, поэтому их сопротивления при рас­чете общего сопротивления фазы должны быть приведены к одному току. Таким образом, сопротивление фазы короткозамкнутого ро­тора r2 является расчетным параметром, полученным из условия равенства электрических

Рис. 9.51. Коэффициенты к расчету проводимости

дифференциального рассеяния:

а — коэффициент Δz в зависимости от размерных соотношений bш/tz и bш/S;

б — коэффициент k' в зависимости от дробной части числа q;

в — коэф­фициент К' в зависимости от укорочения шага обмотки β;

г — коэффициент К''β в зависимости от укорочения шага обмотки β и дробной части чис­ла q;

д — коэффициент k'ск в зависимости от соот­ношения tz2/tz1 и относительного скоса пазов βck

потерь в сопротивлении r2 от тока I2 и сум­марных потерь в стержне и участках замыкающих колец соответственно от тока в стержне Ic и тока в замыкающем кольце Iкл реальной машины:

(9.166)

где Iс — ток в стержне ротора; Iкл — ток в замыкающих кольцах; rC — сопротивление стержня; rкл — сопротивление участка замыка­ющего кольца, заключенного между двумя соседними стержнями (см. рис. 9.35).

Ток Iс называют током ротора и в расчетах обозначают I2.

Учитывая, что

Iкл = Iс /Δ = I2 /Δ, (9.167)

где Δ = 2sin — (см. § 9.7), из (9.167), получаем

r2 = rс + 2 (9.168)

где

rc = ; (9.169)

rкл = (9.170)

В этих выражениях Iс — полная длина стержня, равная расстоя­нию между замыкающими кольцами, м; Dкл.ср — средний диаметр замыкающих колец, м (см. рис. 9.37):

Dкл.ср = D2 - hкл; (9.171)

qc — сечение стержня, м2; kr — коэффициент увеличения активного со­противления стержня от действия эффекта вытеснения тока; при рас­чете рабочих режимов в пределах изменения скольжения от холостого хода до номинального для всех роторов принимают kr = 1; qкл — площадь поперечного сечения замыкающего кольца, м2; рс и ркл — соответственно удельные сопротивления материала стержня и замыкающих колец, Ом м, при расчетной температуре (см. табл. 5.1).

Сопротивление r2 для дальнейших расчетов должно быть приве­дено к числу витков первичной обмотки. Выражение коэффициента приведения для сопротивления фазы короткозамкнутого ротора по­лучают, подставляя в (9.151) значения m2 = Z2, w2 = 1/2, kоб2 = 1 и учитывая влияние скоса пазов:

(9.172)

где коэффициент скоса пазов (по 3.17)

kск = 2 sin ;

Обычно значения βск выражают в долях зубцового деления ротора tz2. При скосе пазов ротора на одно зубцовое деление стато­ра γck = π2p / Z1. В этом случае в двигателях с 2р = 2 из-за малости угла γck принимают kcк = 1.

Приведенное значение активного сопротивления фазы обмотки короткозамкнутого ротора

r'2 = r2 v12. (9.173)

Индуктивное сопротивление рассеяния обмотки статора асинх­ронного двигателя с короткозамкнутым ротором рассчитывается по той же формуле, что и для статора с фазными роторами, т. е.

x = 1,58 (9.174)

Входящий в формулу коэффициент магнитной проводимости пазового рассеяния λп определяют в зависимости от конфигурации пазов по формулам табл. 9.26.

Коэффициент магнитной проводимости лобового рассеяния λл определяется по (9.159).

Коэффициент магнитной проводимости дифференциального рассеяния λд1 определяют по формуле

(9.174а)

в которой ξ, находят следующим образом.

При открытых пазах статора и отсутствии скоса статора или ротора

(9.175)

При полузакрытых или полуоткрытых пазах статора с учетом скоса пазов

(9.176)

В этих формулах tz1 и tz2 — зубцовые деления статора и ротора; ΔZ определяют по кривой рис. 9.51, a, kβ определяют по (9.155) или (9.158); βcк = β/tz2 — скос пазов, выраженный в долях зубцового деления ротора. При отсутствии скоса пазов bск = 0; k'cк определяют по кривым рис. 9.51, д в зависимости от tz2/tz1 и βcк (при отсутствии скоса пазов — по кривой, соответствующей βск = 0).

Индуктивное сопротивление обмотки короткозамкнутого ротора определяют по формуле

(9.177)

полученной после подстановки в (9.152) значений m2 = Z2 и q2 = 1/(2р) обмотки короткозамкнутого ротора и введения дополнительного слагаемого λск.

Характеристики

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6374
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее