ГЛАВА 9 Проектирование асинхронных машин (967515), страница 21
Текст из файла (страница 21)
9.10.2. Индуктивные сопротивления обмоток двигателей
с фазными роторами
Индуктивные сопротивления обмоток статора и ротора двигателей с фазными роторами рассчитывают по формуле
здесь расчетная длина l'δ при наличии радиальных вентиляционных каналов для обмотки статора
l'δ = l1 - 0,5 nk bk (9.153)
и для обмотки ротора
l'δ = l2 - 0,5 nk bk (9.154)
при отсутствии радиальных каналов в этих формулах nк = 0.
Входящие в (9.152) коэффициенты магнитной проводимости λп, λл и λд обмоток определяют следующим образом.
Коэффициент магнитной проводимости пазового рассеяния рассчитывают по формулам, приведенным в табл. 9.26, в зависимости от конфигурации паза и расположения в нем проводников обмотки (рис. 9.50). В этих формулах значения коэффициентов kβ и k'β зависят от укорочения шага обмотки β, которое определяют по расчетному шагу обмотки (см. гл. 3) β = урасч / τ.
При β = 1
kβ = k'β = 1 (9.155)
При обмотке с укорочением 2/3 ≤ β≤ 1
k'β = 0,25 (1 + 3β); (9.156)
при укорочении 1/3 ≤ β ≤ 2/3
k'β = 0,25 (6β - 1). (9.157)
Коэффициент
kβ = 0,25 (1 + 3 k'β). (9.158)
Рис. 9.50. К расчету коэффициентов магнитной проводимости пазового рассеяния
фазных обмоток:
а—е — обмотки статора; ж—и — обмотки фазного ротора
Таблица 9.26. Расчетные формулы для определения коэффициентов
магнитной проводимости пазового рассеяния обмоток статора и
фазного ротора асинхронных двигателей
Рисунок | Тип обмотки | Расчетные формулы |
9.50, а | Двухслойная | |
Однослойная | ||
9.50, б | Двухслойная | |
9.50, в,г,з | Двухслойная и однослойная | |
9.50, д,е,и | То же | |
9.50, ж | Двухслойная |
Коэффициент магнитной проводимости лобового рассеяния
λл = 0,34 (lл – 0,64 β τ ) (9.159)
где q и lл — число пазов на полюс и фазу и длина лобовой части витка обмотки; β = урасч / τ — укорочение шага обмотки, для которой проводится расчет, т. е. обмотки статора или фазного ротора.
Коэффициент магнитной проводимости дифференциального рассеяния для обмоток статора и фазного ротора
Значение коэффициента ξ зависит от числа q, укорочения шага обмотки и размерных соотношений зубцовых зон и воздушного зазора.
Ниже приводятся формулы, в которые при расчете ξ, для обмоток статора или ротора следует подставлять данные обмоток и зубцовых зон соответственно статора или ротора.
Для обмоток статора и ротора при q, выраженном целым числом (q ≥ 2), для обмотки с β = 1
ξ = 2 + 0,022 q2 – k2об(1 + Δz); (9.161)
при укороченном шаге обмотки (β < 1)
ξ = k''q2 + k'β – k2об(1 + Δz); (9.162)
при дробном (q ≥ 2)
ξ = k''q2 + 2k''β – k2об( + Δz); (9.163)
при дробном q, значение которого 1 < q < 2,
ξ = k''q2 + 2k''β – – k2об(
+ Δz); (9.164)
В этих формулах коэффициенты Δz, k', k" и k"β определяют по кривым, приведенным на рис. 9.51. Для определения k"β и k' необходимо найти дробную часть числа q, равную c/d (дробное число q = b + c/d, где b — целое число, c/d < 1 — дробная часть числа q), коэффициент k'β — по (9.156) или (9.157).
Индуктивное сопротивление обмотки фазного ротора, определенное по (9.152), должно быть приведено к числу витков обмотки статора:
х'2 = v12 x2, (9.165)
где v12 — коэффициент приведения сопротивлений по (9.151).
9.10.3. Сопротивления обмоток двигателей с короткозамкнутыми роторами
Активное сопротивление фазы обмотки статора двигателя с короткозамкнутым ротором рассчитывается так же, как и для двигателя с фазным ротором.
Активное сопротивление фазы короткозамкнутого ротора определяется следующим образом. Как говорилось выше, за фазу обмотки, выполненной в виде беличьей клетки, принимают один стержень и два участка замыкающих колец (см. рис. 9,35). Токи в стержнях и замыкающих кольцах различны, поэтому их сопротивления при расчете общего сопротивления фазы должны быть приведены к одному току. Таким образом, сопротивление фазы короткозамкнутого ротора r2 является расчетным параметром, полученным из условия равенства электрических
Рис. 9.51. Коэффициенты к расчету проводимости
дифференциального рассеяния:
а — коэффициент Δz в зависимости от размерных соотношений bш/tz и bш/S;
б — коэффициент k' в зависимости от дробной части числа q;
в — коэффициент К' в зависимости от укорочения шага обмотки β;
г — коэффициент К''β в зависимости от укорочения шага обмотки β и дробной части числа q;
д — коэффициент k'ск в зависимости от соотношения tz2/tz1 и относительного скоса пазов βck
потерь в сопротивлении r2 от тока I2 и суммарных потерь в стержне и участках замыкающих колец соответственно от тока в стержне Ic и тока в замыкающем кольце Iкл реальной машины:
где Iс — ток в стержне ротора; Iкл — ток в замыкающих кольцах; rC — сопротивление стержня; rкл — сопротивление участка замыкающего кольца, заключенного между двумя соседними стержнями (см. рис. 9.35).
Ток Iс называют током ротора и в расчетах обозначают I2.
Учитывая, что
Iкл = Iс /Δ = I2 /Δ, (9.167)
где Δ = 2sin — (см. § 9.7), из (9.167), получаем
где
В этих выражениях Iс — полная длина стержня, равная расстоянию между замыкающими кольцами, м; Dкл.ср — средний диаметр замыкающих колец, м (см. рис. 9.37):
Dкл.ср = D2 - hкл; (9.171)
qc — сечение стержня, м2; kr — коэффициент увеличения активного сопротивления стержня от действия эффекта вытеснения тока; при расчете рабочих режимов в пределах изменения скольжения от холостого хода до номинального для всех роторов принимают kr = 1; qкл — площадь поперечного сечения замыкающего кольца, м2; рс и ркл — соответственно удельные сопротивления материала стержня и замыкающих колец, Ом м, при расчетной температуре (см. табл. 5.1).
Сопротивление r2 для дальнейших расчетов должно быть приведено к числу витков первичной обмотки. Выражение коэффициента приведения для сопротивления фазы короткозамкнутого ротора получают, подставляя в (9.151) значения m2 = Z2, w2 = 1/2, kоб2 = 1 и учитывая влияние скоса пазов:
где коэффициент скоса пазов (по 3.17)
Обычно значения βск выражают в долях зубцового деления ротора tz2. При скосе пазов ротора на одно зубцовое деление статора γck = π2p / Z1. В этом случае в двигателях с 2р = 2 из-за малости угла γck принимают kcк = 1.
Приведенное значение активного сопротивления фазы обмотки короткозамкнутого ротора
r'2 = r2 v12. (9.173)
Индуктивное сопротивление рассеяния обмотки статора асинхронного двигателя с короткозамкнутым ротором рассчитывается по той же формуле, что и для статора с фазными роторами, т. е.
Входящий в формулу коэффициент магнитной проводимости пазового рассеяния λп определяют в зависимости от конфигурации пазов по формулам табл. 9.26.
Коэффициент магнитной проводимости лобового рассеяния λл определяется по (9.159).
Коэффициент магнитной проводимости дифференциального рассеяния λд1 определяют по формуле
в которой ξ, находят следующим образом.
При открытых пазах статора и отсутствии скоса статора или ротора
При полузакрытых или полуоткрытых пазах статора с учетом скоса пазов
В этих формулах tz1 и tz2 — зубцовые деления статора и ротора; ΔZ определяют по кривой рис. 9.51, a, kβ определяют по (9.155) или (9.158); βcк = βcк/tz2 — скос пазов, выраженный в долях зубцового деления ротора. При отсутствии скоса пазов bск = 0; k'cк определяют по кривым рис. 9.51, д в зависимости от tz2/tz1 и βcк (при отсутствии скоса пазов — по кривой, соответствующей βск = 0).
Индуктивное сопротивление обмотки короткозамкнутого ротора определяют по формуле
полученной после подстановки в (9.152) значений m2 = Z2 и q2 = 1/(2р) обмотки короткозамкнутого ротора и введения дополнительного слагаемого λск.