Главная » Просмотр файлов » Теплопередача. Учебник для вузов. В.П. Исаченко, В.А. Осипова, А.С. Сукомел, 1975

Теплопередача. Учебник для вузов. В.П. Исаченко, В.А. Осипова, А.С. Сукомел, 1975 (945106), страница 9

Файл №945106 Теплопередача. Учебник для вузов. В.П. Исаченко, В.А. Осипова, А.С. Сукомел, 1975 (Учебник Исаченко) 9 страницаТеплопередача. Учебник для вузов. В.П. Исаченко, В.А. Осипова, А.С. Сукомел, 1975 (945106) страница 92013-09-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 9)

Рассмотрим одномерную задачу для всех трех случаев при оосгоявном коэффициенте теплопроводности стенки. При этом зависимость температуры в пространстве для плоской стенки представим как 1= =),(л), для цилиндрической стенки Г=)з(г) в для шаровой стенки Г= =)з(г)'. Вели принять, что изотермические поверхности в рассматриваемых телах замкнуты, то температура становится фуннцией тольке коорднкаты л, являюгцейся нормалью х изстермическим поверхностям, тепловой поток будет пропорционален градиенту температуры д)гдп, а величина поверхности выразится фуницией г=г(л). Замюгутость наотермических поверхностей для цилиндра и п1ара очевидна, а пластину будем рассматривать квк предельный случай замкнутой Системы, когда л — эь. Вследствие замкнутости нзотермвческих поверхностей тепловой поток через стенку любого из рассматриваемых тел можно представить еак Ю= — х — р(п).

нг аи (2-67) Так как О=сола( для любой взотермнческой поверхности, то, разделяя переменные в уравнении (2-67) н интегрируя в пределах ст й=л1 ДО Л=Ш И СООтВЕЗСГВЕННО От ге, ДО С,а ПОЛУЧИМ: (2-68) Видим, что формула (2-68) аналогична ранее полученной для пло СКОЙ ОГЕНКИ1 Д (гм — гм) р= — й —— Прн этом Я аналогично нлотиости теплового потока Ш а ) г(ШР (л)= =.'„"* — толщине стенке, которую в дальнейшем условимся называть прнведеииой толщиной стенки. формула (2-68) является обшей для оннсания теплового потока через стенки всех трех геометрических форм. Величина ) бл/Г (л) зависит только от геометричесной формы стенки.

а) Для плоской пластины л=-х, лг=б и лз=б, а Г(л) =В сопзй тогда е Подсташшя полученное зкачегше )'ь в уравнение (2-68). приходим к выражевшо теплового потока ГГ, Вт, для плоской пластины: Л ро — г,) (2.69) 6) Для цилиндрической стенки л=г, л~=гг и лз=гь а Р(л).=Р(г) 2лг), тогда гл(л) г л г г, ') л(я> ) зу ъя С учетом полученного значения 1„"' выраженве (2-68) прикнмает вндг зых (г — зо! (2-76) г, Ь— г в) Для шаровой стенки л=Г, л,=-г, и лз=гз, а р(н) Р(г) =зять, тогда и формула (2-68) применительно к шаровой стенке принимает видг вя(г„— г ) ( 7)) ! 8, л Интегрируя выражение (2-67) в пределах ог л, до любой текущей шюрдинаты и в интервале температур ггг (ьг до й получаем уравнение длв температурного поля; г=ф — — ~— О г Зл л ~ л()- Обозначая) дл)Г(л)=7"„, последнее уравнение можно записать: Подставляя в полученное выражение значение теплового потока !ч из (2-68), получаем: г" (2 72) Отношение 1"„!)ю в уравнении (2.72! можно рассматривать как некоторую приведенную безразмерную координату Х, которая зависит ат геаметрнчесиай формы стенки.

Уравнение (2-72),можно привести к безразмерному виду: я для цилиндрической стенки Г !а— Х=Х„= !а — ' и даа шаровой стенки (2.74) (2-75) (2-76) Уравнения (2-68) и (2-73') получены при постоянном коэффициенте теплопроводнасти степин. Аналогичным образом можно получить обобщенные зависимости и для случая, когда коэффициент теплопровопности д является функцией температуры. 3-а. птн! Ннтенснжииацин тепнопеведачи и) Интенсифи«иция генлонередачи путем увеличения «аэффициентае геллаотдачи Из уравкенпя теплопередачи !е=йрй! следует, что при заданных размерах стенки и температурах жидкостей величниой, определяющей теплапередачу, является й. Йо поскольку 46 г„гм С обозначениями " = 6 (безразмерная теыпература) и )„"/Р„"=Х уравнение (2-73) принимает внд: 9- 1 — Х.

(2-73') Уравнвяие (2-73) является обобщенным выражением температурного паля в безразмерных величинах для всех трех геометрических фарм. Приведенная безразмерная координата в уравнении (2-73') вычисляется с учетом геометрической формы стенки: для плоской степки теплопередача — явление сложное, то правильное решение можно най- ти только на основе анализа частных составляющих, карактеризующих процесс.

Так, например, если мы имеем дело с плоской стенкой, для иоторой ! з — + — +— Л то при 6(Л вЂ” ьО (что можно принять для тонких стенок с большим коэффищгентом Л) ! й'= ! ! г!, — — !+ — — +! (2-77) Иэ уравнения (2-77) следует, что коэффициент теплопередачн не мажет быть больше самогп малого о. Прн аз † й' стремится к своеыу предельному значению о, При о! — ьсо коэффициент теплопередачи стремится к пь Проследим это на числовых примерах.

а) 1) о,=40 н щ=500О Вт!'(и'К) ! 2) ог=-40 и оз=(0000 Нт((ма.К). По формуле (2-77) находим, что коэффициенты тенлопередачи будут равны: й',=39,7 Вт/(м'К) и Из=398 Вт((ьр-К), 6) 1) о!=80 Вт!(иэ.К) и па=5000 Вт/(мз-К) ! 2) о!=200 Вт((мэ К) и оа=-5000 Втг(мэ.К). Для случая (б) находим, что коэффициенты теплопередачи становятся равными! й'!=788 ВтДмг К) и Дт=(92 Нт!(мт К). Из рассмотрение!о примера видно, гго нри огщщ увелигениебольшего из коэффициентов теплопередачи (о,) практически ве дает увеличения й'!. Увеличение меньшего из коэффидиентов теплоотдачн ' ! о!) в 2 в 5 рзз пает увеличение м — — 1- вЂ Ь вЂ )-зь~-З з 23.

почти во столько же раз. ) ~ ~ ( ~о! зависимость й'=-1(а!. ае) соглас- ~ 1,' ' и з на формуле (2-77). Из графика д ~,. ': ( ) следует, что прн увеличении и! .с значение й' быстро растет до тех ппр, пака а! не сравняется с оь После того яак а, станет больше аь рост д' замедляется и при э х ь г з гг гг гь гэ гв дальнейшем увеличения и, практически пРекРащветса. Следова- Рас х-Ы з,а и г г=((оь щ) тельна, при о! Соз для увеличения А' следует увеличивать ог, т. е. уменьшать болыпее из термических сппротнвлеаий 1!пг.

Иначе гщюря, при ги((щ уветичевие Й' возможно только за счет увеличения о«Если а!=аэ, увеличение козффиолента теплопередачи впэможно за счет увеличения любого из о. б) интенсификация теллолередачи за счет аребрения сынок При передаче теплоты через цилиндрическую стенку термические сопротивления 1гш»2» и 1/га»2» определяются не толька значениями коэффициентов теплоотдачн, но и размерами самих поверхностей. При передаче тепла через шаровую стенку влияние диаметраи уг и д» оказывается еше сильнее, что видно из соотношений 1~анР» и 1/а»»Рч.

Отсюда слепует, что если а мало, то термическое сопротивление теплаотдачи можно уменьшить путем увеличения соответствую»пей поверхности. Такай же результат можно панучпть й для плоеной стенки, если одну из поверхностей увеличить путем оребрения. Последнее обсгантельство и положена в основу интенсификации теплапередачи за счет оребрения. При этом термические сопротивления станут пропорциональными величинам ! Следует указать, чта при использовании метода оребрения нужно руноводстзоваться следующими соображениями: если о»Жаь то оребрять поверхность со стороны о, следует до тех пор, пака а»р» не дпстнгает значения азуь Дальнейше~ увеличение поверхности Р, малоэффективна.

Ребристые поверхности изготавливаются или е виде сплошных отливок нлн отдельных ребер, прикрепленных к поверхности. Строгое аналитическое решение задачи а распространении тепла в ребре связано са эначвтельпымп трудностями. В асвону решения поэтому кладут некоторые допущения, которые позволнкгг сравнительно простым путем получить нужный результат. Ниже рассмотрим метод решения задач о теплоправодности з ребрах нростейшнх геометрических фарм.

з-г. »еппОПРОВОдносгь в стеюине 1еенрвр ПОСГОЯННОГО ПОПЕРЕЧНОГО СЕЧЕНИЯ а) Дифференциальное уравнение и его решение Ребра в поперечном сечении могут иметь профиль самой различной геометрической конфигурации глрямоугальпик, круг, треугольнин и другие фигуры, в том числе и неправильной геометрической фпрмы). Рассмотрим распространение тепла в пря- Г' мом стержне с постоянным папере шым сечением па длине. Обозначим плагцадь поперечного сечения стержня через 1 и периф ~~ "ве метр через и. Стержень находится в среде ,г с постоянной температурой 1, коэффиписят теплаотдачи ат поверхности стержня к окру. жающей среде будем считать постоянным для всей поверхности.

Будем полагать так— в же, что коэффициент теплапроводнасти материала стержня ь достаточно велик, е а.„. а пагеречиое сечение очень мало па сран«о зеваю с его длиной. Последнее дает основание пренебречь изменением температуры в поперечном сечения и считать,чтоона из- Риг. 2-12. Перенес т»ваап» че ры смрпень 48 меняется только вдоль осн стержня. Для удобства дальнейших выкладок отсчет температуры будем вести от 1, =-соней Отсчитаннуго таним обрааом избыточную температуру стержня обозначим через б. Очевидно, б=( — 1, где 1 — температура среды, окружающей стержень; 1 — текущая температура стержня.

Если задана температура основания стержня Гь то избыточная температура стержня (рис. 2-12) будет; бг 1» — 1 . На расстоянии х от основания стержня выделим элемент стержня длиной Дх. Уравнение теплового баланса длк рассматриваемого зле. мента можно записать: Я вЂ” Я но=ай%. (а) где М' — количество теплоты, входящее в левую грань элемента За единицу нременн; О тг, — колиюство теплоты, которое выходит из противопалшкной грани клемента за то же времн; дя — количество теплоты, отдаваемое за единя)!у времени наружной поверхностью злемента окружающей его среде. Согласно закону Фурье ах ) ав 1)еел„— Д вЂ” ('й+ — Дх) (, откуда м„х„= — х( — Ц вЂ”; Дх.

Характеристики

Тип файла
DJVU-файл
Размер
4,64 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее