Главная » Просмотр файлов » Теплопередача. Учебник для вузов. В.П. Исаченко, В.А. Осипова, А.С. Сукомел, 1975

Теплопередача. Учебник для вузов. В.П. Исаченко, В.А. Осипова, А.С. Сукомел, 1975 (945106), страница 11

Файл №945106 Теплопередача. Учебник для вузов. В.П. Исаченко, В.А. Осипова, А.С. Сукомел, 1975 (Учебник Исаченко) 11 страницаТеплопередача. Учебник для вузов. В.П. Исаченко, В.А. Осипова, А.С. Сукомел, 1975 (945106) страница 112013-09-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 11)

Рассмотрим расчет тенлапроводнасти круглого ребра постоянной толщины (рис. 2-15). Круглые ребра применюотся при оребреипи цилиндрических поверхностей (труб). Заданы внутренний радиус ребра гн наружный гр, толщина б и коэффициент теплопроводностн Х. Температура среды гы=сопз1. Избыточная температура ребра будет: 0=1 — 1: Задан постоянный коэффициент теплоотда,р, через чштере реаро чи а на всей поверхности ребра и температура расторрнра голи!вен.

у освонанин ребра бь Режим стационарный, и температура изменяется только по высоте ребра. Найдем для этих условий дифференциальное уравнение, которым опнсываетсн процесс теплоправодпости в ребре. Составим уравнение баланса энергии для кольцевого элемента ребра толщиной бгр Ю.— Я +э=~%. (2-91) Находя составляющие уравнения (2-91), получаем дифференциальное уравнение вида: б'В ! бВ Ъ - — + — — — — в=-й. бгэ г б ЛР 12-9л/ Обозначим 2а/ай=же, тг=п и 1/г т/и; тогда уравнение (2-82) паоле подстановки бб/бг=п1бб/бя и рРЮ/бгт=-те(бэб/бзр) принимает вид: —,+ — — — В=о.

щв ! бв (2-93) 55 Уравнение (2-93) представляет собой уравнение Бесселя, имеющее общее ре(пение вида 6=Са(а(е) +Сг«е(е). (2-94) где )е(е) =)а(лм) — модифицированная функция Бесселя первого рода нулевого порядка; Ка(е) =Ке(тг) — моднфацированная функция Бесселя второго рода нулевого порядка. Этн функции имеют следующие сео(чства: при г=о (е(тг) =.=1 и К,(тг)— Ь при г= — ее (а(нюг) сс в Ка(тг)= — О.

Постоянные С, и С» определяются из граничных условий. Если теплоотдачей с торца круглого ребра пренебречь, то расчетные формулы будут иметь вид: для текущей температуры в ребре 6=6, '(ае)К'(тг')+ '(ам*)!" ('"'); = ° г,'(-„ИК,'(~ч.')+ г,'(~,*! «.'((и) ! (2-95) для температуры ва когще ребра Г,( БК,( Б+Г (,)К,( ).

'Г,(~! «, Р~)+( (тг! К, ~(ц)! для количества теплоты (2-96) С(= — д2т,б ~ — у! =2гл;айтб ф, еае ч (2-97) где ф — ' г,(тдК, (т ! — г,(а,! К,(т 9 l,(е,)К,(тг)+, (тг ! «(ае,) При пользовании этими формулами теплоотдача с торца может быть учтена условным ) велнчсаием высоты ребра (гг) па половину толщины торца.

Формулы (2-95) — (2-97) громоздни и мало удобны для техническнк расчетов. Поэтому для других ребер постоянного сечения, а также аг— а для различных прямых ребер переменного сечения расчет можно свести к методике расчета правее мых ребер постоянного сечения. т При этом количество теплоты, ко- торое будет отдавачъся паверхнао, а стью круглого ребра постоянной толп(ины, е~/~~ (е'= е'г'ф (2-98) 'о аг ае ое ее г,е где (,!' †количест теплоты, от- — даваемое круга|ы» )юбргмл Бм емй грабах ала расчета ар»савх репрев. сгеанееа»алтаем.

Г' — понерхность круглого реб- ра, мг; О==(у(Р— количество теплоты, отдаваемое в единицу времени елниицей поверхности прямого ребра, толщина которого равна толщине круглого, а длина равна ! м; з'=)(бг(бь гг/г,) — поправочиый коэффициепт, определяемый по криным рис. 2-16. 56 Здесь бхрбс — отношение температур на концах ребра, вычисленных по формулам лля прямого ребра постоянного сечения.

Таким образом, вычисляя теипературу на конце ребра н глотность теплового потока для прямого ребра и подставляя д и е' и уравнение (2-98), получим значение тепловою потока для круглого ребра. е се. ТепиОПРОводнОсть примОГО икра леРеменнОРО сечения При конструировании систем охчаждения для целого ряда машин, в особенности для летательных аппаратов, приобретает особую важность решение задачи максимальною теплообмена при минимальной массе теплообменникз. Воааикает с вопрос о там, какова оптимальная форс~а сечении в- с ребра, имеющего минимальную массу при заданном тепловом потоке. — — !с Ребро с минимальной массой (Л. 2099 Существо вопроса сводится ь тому, чтобы каждая часть ребра испольаовалась с одинаковым эффектом.

т. е. плотность тепловою потока должки оставаться постоянной по всему поперечноч] сечению ребра. Зто значит. что линии теплового потока должны быть параллельными оси ребра. При этих условннх теипература вдоль линна теплового патоке будет измеиятьси по линейному закону (рис. 2-17). Г! При заданной температуре у основания ребра Д и при температуре вершины ребра, близкой к температуре окружающей среды ! ., в силу.

одномерности задачи для любого сечения ребра можно записать: Рис. 2-17. Ссчеиие Ребра и иимального кеса. ! — г. = — „(1,— ! ), (2-99) где х — расстояние па оси ребра от его вершины; й — полная высота ребра. Рассмотрим элемент поверхности ребра на расстоянии х. Пусть этот участок поверхности образует с осью ребра угол и.

Если плотность теплоиого потока вдоль оси ребра ранна д, то через рассматриваемый элемент поверхности ребра ова будет равна Е в!и!с (рнс. 2-17). Т!ри этом должно быть справедливо соотношение дз!пм=п(! — 1„,), и ~и (2-100) де)пр= — — л(1,— ! ). Ь Из равенства (2-!00) следует, по угол тр является функдией только х: в, зшр=фх. !2.100) Контур ребра, найденный указанным методом, представляет собой дугу окружности с радиусом г, так как з!пф-к/г. Иэ уравнений (2-100') следует, что гй Ей!пбь Доказано, что такой профиль ребра. 5? (200!1 образованный дугамн окружности, обладает минимальной массой. Такое ребро и ребро треугольного сечения по массе отличаютгл очень малс.

По технологическая причинам проше изготовить ребра треугольнога профиля, поэтому на практике они используются чаще, чем ребра, образованные лугой окружности. Ребро треугольнагр и трзпе) — хт — 1 — б,' ц и е в н л н о г о с е ч е н и я. В практике иаш- ли широкое применение прямые ребра как . Р;.~;Рг;;-,':;с,'г) греугольнагосечеиия с острой вершиной,так ,ч ч"ф.бмф; и с усеченной вершиной — трапециевидные. 777 ' 'Яб фб Пусть заданы размеры трапециевидного РебРа (рнс. 2-18) и избыточная температура бл у его основания.

За начало координат Рв«. 2-)8. пепе»ос тез»атм че аслесообразно принять вершину треугильгез прямее ребра шзаеаиевка- ника, направив ось х вдоль оси симметрии ного сеченая. ребра Прн этом веитор плотности теплово- го потока 4 будет направлен в сторону, про-. тивоположну|о положительному направлению оси х (Л. 124). Для такого ребра площадь иоперечиого сечения 1 будет функцией только координаты х: (=18=2(х(2 Р. (а) Количество теплоты, которое будет отдаваться в окружаюп(ую среду с элемента ребра бх, будет равно: б~д) — я» 7)=аиббх', (Лз Л (б) где а -- коэффициент теплоотдачи на поверхности ребра; и — периметр сечения ребра на расстоянии х, который можно выразить как я=21; л(х'=г(х/соз и.

Произведя дифференцирование выражения (б) с учетом соотношения (а), получим: —,+ — — — — В=О. ла ! ю (в) я»* » я» х лиат После введения новой переменной х=(а(Лз)п6)х уравнение (в) приобретает вид: и'а ! яе —,+ — — 0=0. З» + з яг Дифференцвальноеуравнепие (2-!01) есть модифицированное уравнение Бесселя, решение которого имеет вид: 8 С 1»(2У7)+ СаКе(2) "а ) (2-10») где !з и Ке — модифицированные функции Бесселя первого и второго рода. Постовнные С~ н Ст в уравнении !(2-102) находятся из граничных условий, которые для рассматриваемого случая запишутся так: при х=хг имеет место 6=-6» Если пРенебРечь потеРЯми тепла с тоРца РебРа, то пРи х=хз имеем 6=67 н (бб(бх)„=0.

После определения постоянных Сг и Сз получим: лля текушей температуры в ребре 8 ), (7У») К,(2Уг,)+),(2)'х,!К,(21' ) ' 7, (2 У»,) К, (2 Уж) + ), (2,) К, (г Ух)Л( для температуры иа конце ребра <,<2Ум) К,(2Ум)+<,(2У.) К,(2У*,) '<,<грл)К,<2Ум)+<,(2Ум)К.<2Ул) ' Тепловой поток можно определить по закону Фурье: [2-!04) 1(, ,(2Улж) К,(2Уе,) — <,(2УУДК,<2)'з)] ( Г,<трл,)К,(2.Улл) т< <2 Уел) К.21 лП При пользовании этими формулами теплоотдача с торца может быть учтена условным увеличением высоты ребра й на половину толщины его торца бл/2 Веля ребро имеет треугольное сечение, то н этом случае щ=О, а следоватепьно, н в.=0, /,(0) =0 и формулы (2-103) — (2-!05) принимают вид: (2-105) (2-1Сб) (2-)ОУ) (2-105) Г (2Уе) (.2 Уе, й,=б, Г,<2~ л,) «Е,а,! ( Г,(22 л) < *.и т 1 «,22",) ) 5<аксвмальный тепловой поток через ребро треугольного сечения данной массы будет имщь место прв выполнении равенства (2-109) Формулы (2-103), (2-10<) и (2-105) громоздки п неудобны аля практических расчетов.

Поэтому расчет ребер переменного сечения можно свести к методике расчета прямьж ребер постоянного сечения. В этом случае О"= Р"Ф (2-! 10) )1' Т где (гт — количество передавае. мой теплоты в едииицу времени; /ж — поверхность охлаждения гд .Иле ребра; д=<;1/Р— плотность тепло.

ваго потока Лля прямоугольного ребра, длина, высота и толщвна которого равны длине, высоте и толщине суженного ребра; е"= р пг л" сл и" хл =/(<В/Ог, бл/бг) — поправочиый рлс 2 <в е -/<в(лв, в,/в,) — еслеиеганоэффнциеит иа суженяость реб- ми элиа тра<ми ллл расчете ребре трапера; в" опревеляетсп по графику мл.лилнсгс л трегпщ а|с еменза. рис. 2-19. Нижняя кривая (при бл/5,=1) соответствует прямому ребру постоянного сечения, а верхняя (<Ц/бе=О) — треугольному ребру. Отношение бг/О, вычисляется ио форм>ле (2-И). Теплоотдача с торца ребра при этом учитывается путем увеличения высоты ребра Ь на половину толщины торца. т! з-тт.

1ЕППОП3'ОВОДНОСта ППОСИОИ пОпуОграниченнОЙ ОднОРОднОЙ ппастнны а*г ач —,+ —,=0 ил' др' —,+ —,=О, д% ФФ дх рг' (2-П1) где Π— избыточная температура, отсчитанная от Гг, т. е. 6=! — Гь Граничные условия: (О при х=0, Д (2-11л] (О при у — ео; )(х) — Гт=р(х) прн у=0. )(ля решения уравнения и частных производных (2-П1) воспользуемся методом разделения переменных'.

Предположим, что 6= )(х, р) О(х)ф(у). Тогда уравнение (2-П1) приводится к виду = — — сопя!. Р" 06 4" !Р) РОО ФОО (2-П 3) Правая и левая части уравнения одииакпвы в постоянны. Обозначим ик через — ее. Таким образом, мы получаем два обыкновенных дифференциальных уравнения: р"(х) +е~р(х) =.О; (2-!14] т)" (у) — лев (у) = О. (2-!16) Решением дифференциального урввнешгн (2-П4) является функция вида: О(х) тСт гол (гх) +Слети (ех]. (2-116) Согласна (2-79) общее решение уравнения (2-Пб) будет иметь вид: ф(у) =С,е "+С е (2-112) ' Наюе лалроаю ыот метод рееемотрлоаетол л гл 3 лрлмевемльао х еоаачлм лееталоолерлаа теллолроет,ллоотл. 60 Рассмотрим плоскую однородную пластину тпириной 6 с постоянньпл коэффициентом теплопроводвости д н неограниченным размерам в направленвн оси Оу (рис.

Характеристики

Тип файла
DJVU-файл
Размер
4,64 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее