Главная » Просмотр файлов » Anti-Demidovich (Boyarchuk A.K., Golovach G.P.). Tom 5. Differencial nye uravnenija (2001)(ru)(T)(394s)

Anti-Demidovich (Boyarchuk A.K., Golovach G.P.). Tom 5. Differencial nye uravnenija (2001)(ru)(T)(394s) (940505), страница 74

Файл №940505 Anti-Demidovich (Boyarchuk A.K., Golovach G.P.). Tom 5. Differencial nye uravnenija (2001)(ru)(T)(394s) (Антидемидович) 74 страницаAnti-Demidovich (Boyarchuk A.K., Golovach G.P.). Tom 5. Differencial nye uravnenija (2001)(ru)(T)(394s) (940505) страница 742013-09-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 74)

7. Метод интегральных преобразований Лапласа 342 Теорема 2. Если изображение Р есть меромарфнан фунниия на комплексной пласкаопи р и аналитическая на нарунлагкасти )(ер > а и если существует последовательность екрузкностей С„= (р Е С: 1р~ = А„), Вь < Вь < ..., Н вЂ” +со, на которой Р(р) стремится к нулю равномерна относительно агйр, а также»уа > о интеграл )' Р(р)йр абсолютно сходится, та оригиналам изображения Р(р) яеляетгл функция О(1)У(() = ',), юз(е "Р(р)). (4) Если для точки зь можно указать такую б-окрестность, что при однократном обходе точки з«по любому замкнуюму контуру, целиком лежащему в этой б-окрестности, одна ветвь многозначной функции переходит в другую, то точка з« называется точкой разветвления данной мно- гозначной ф ункции.

Если среди особых точек функции ер'Р(р) кроме полюсов и существенно особых точек рь (й = 1, 22) имеются точки разветвления р,' (ь' = 1, гп), то « ! « Г(() = ~ гез(емР(р)) — — ~ / ер Р(р) йр, (5) Рь 22гь ., 2«1, » где у,' — контуры, состоящие из окружностей С,' малого радиуса с цен- трами в точках 'разветвления, верхнего и нижнего края разрезов плос- кости по лучам, проведенным из этих точек (рис. 104). Рве. ьае Найти оригинады данных функций Р.

Е Е"«Р 722. Р(р) = —, а > О. а 2»Р ' т Функция.Р— аналитическая на плоскости р с разрезом по отри- С, цательной полуоси. На верхнем крае разреза р = ре" и р = ьзрр, а на нижнем его крае р = ре '" и „р = -2 рр. Поскольку р = 0 — точка 0 разветвлении функции Р, то, согласью формуле (5), имеем 1 г е'"" у(1) = — — / ер йр, 2хь Р' чРР 7« где у« — контур, изобрюкенный на рис. 105, ориентированный против хода часовой стрелки, состоящий из двух лучей и окрухгности радиуса е > О. Оценим г .ьез р,е 'ЧРР ~ е-«»р / ер — йр < / 1еи) ~ — ~йр) ,р .

~,р Полагая р = ееь", получим е 'ЧРР— «чт~х 2 (е 1 — 1йр~ = е' «Р .гй»р < ем,ре2я — »0 при г-»0. Поэтому Р Р«Е -«чрр»««р о ,„е и д +м / ь«,рр -2«.рр) — (е — йр = — ~ е —, йр — ~ йр = — ~ е М ! йр '4 + « +«« ! Г юсова РР 2 Р У(П=-'~'е- йр = — / е " созаийи р 343 03. Обратвое преобразование Лапласа Г гг (после подстановки гр = и). Обозначим 1(а) = / е "'сазана(и. Интегрируя по частям, нахоо з(п аи аг,1+ 21 Г „г, 21 а(1 1(о) = — е а ~~ 4 — / ие " з(пои г(и = — — —. л о а а г(а о Получили дифференциальное уравнение с разделяющимися переменными.

решая его, получаем г 1(о) = Се аг. Постоянную С находим из условия угя 1 рг С = 1(0) = / е " ' Ни = — / е '"' аг(иЛ) =— у71,/ Д 2 2)/1 о о Следовательно, ! гя а 1 аг 1(а) = -)/ — е а, 1(1) = — е 2 )/1 ' ггяг 723. г(р) = е ав, о > О. а Пусть 1(1) =' е '"о. Тогда по теореме днфференшарования изображения получим ,,у 2 е'' -1~(1) ф (е ' г/, илн — ГГ(1) Ф вЂ” — —. о ' гр ,1 Согласно решению предыдущего примера — 11(1) = — е аа . Позтому тяг аг а аг я)= е а, е что=; е ац,м 2чтя(з ' 2(ъ'яг е '"у 724. р(р) = —, о > 0.

р ' а Воспользуемся решениеагапредыдуще~о примера н теоремой интегрирования оригинала. Получим р ' 2чгя,/,ггтз' о Произведя замену 4- —— и, находим: а г а /,е ц г(т = — / е ' би = Ег( ® . о а г гт( Имеем — =' Ег((-ф) . М г+ 725. р(р) = (р — 2)(рг — р — 20) м Поскольку (р — 2)(р~ — р — 20) = (р- 2)(р+ 4)(р — 5), то функция р имеет простые полюсы в точках р, = 2, р, = — 4, рз = 5. Эти же полюсы имеет и функция ег'Р(р). Для нахождения оригинала функции Г воспользуемся формулой (4), п.

3.3. Вычеты функдии р а-а еие.(р) найдем с помощью формулы (8), и.3.2. Имеем еи(рг бр — 1) 5е гез е~р(р) = о=г 3(рг — 2р — 6) 18 ' 344 Гл. 7. Метод интегральных преобразований Лапласа е'(рз+р-1) П и геь ег Р(р) = = — е ь=-ь 3(р' — 2р — 6) 54 еьь(р~+р — 1) ~ 29 геь сир(С) = = — е 3(рз — 2р — б) ) 27 Подставив полученное в формулу (4), и.

З.З, находим: 7(С) = — (1!е 458е — 15е ). и 54 726. р(р) = о -р+2 (р' 4 4)(рз + 1) ° Фунюгия емр(р) имеет простые полюсы в точках р = ж2( и р = ж(. По формуле (8), п. 3.2, находим ем(р'-р+2) (1+ь) „ "р(.) =— 2р(2рз 4 5), б ем(р'-рч-2) 1 — ь „, геь е" Е(р) = — = е ' . г.=з1 2р(2рз + 5) 6 В точках р = — ь и р = 2ь получим комплексно сопряженные выражения. Следовательно, г'! — ь е !+ь „'ь 1 С(С) = 2Ке ( — е ' — е' ) = — (соь2С+ ып2( — соьС+ ь!пС). и 6 6 ) 3 ! 727. р(р) =— (р — 1)'(рг + 1)(р — 2) м Функция е'~е (р) имеет простые полюсы в точках р = 2, р = жь и полюс 3-го порядка в точке р = !.

Согласно формуле (4), п. 3.3, имеем у(С) = геьеь Р(р)+ геьеир(р)+ геь еие(р) Ч- геье"у(р). ь=г ь=! Р= г 1 Вычислим вычеты по формулам (6) и (7), п. 3.2, получим: р! а геье Е(р) = — —, = — е, (р — 1) (рз+ 1) еи 1 геьгзьр(р) 4 геь еь'р(р) = 2Ке (гезеМР(р) ~ = 2Ке ( ) = — (соьС вЂ” Зал(), / ь,(р — 1)з(р+ ь)(р — 2) 7 =; 20 1( еь' е"р(р)=-( г р=' 2 1,(р'+ П(р — 2) ) 1 (2(бр~ — 16р + 15р — 3), Зрг — 4р+ 1, С~си ь~ е' 2 1, (рз + 1)'(р — 2)ь (р 4 1)ь(р — 2)' (рь 4 1)(р — 2)/ 4 Таким образом, еь 1 е С(С) = — + — (соьС вЂ” Зь!п() — — (С 4!).

М 5 20 4 728. р(р) =— рейр чс Поскольку ей р = сов ьр, то функция еир(р) имеет бесконечное множество простых полюсов рз = О, р„= ж( (й — р ) ьг, )ь 6 Я. Согласно второй теореме разложения имеем !ь гч=( — ) ~ь.т ( — ' е ( 7) ~ „соь()ь — 1) кС = 1+2Ке2 ',, = 1+ 2~ (-1) ь(к — -') кь)гь((ь — -') к = (Сь — !) к б 3. Обратное преобразование Лапласа 2 г Йл! ак — — — / У(!)соз — 4! (й Е Уо). о 4, цозтому 1 г — / 2 !22 = 2, ! В рассматриваемом случае 1 = 1 Йкг С05 -2 51п — 4- ! вл ° лл ак = — / соз — ! ой = 2 2 4 1 ао = — / К(!) !(г = 2./ о ! — 1) Таккак со5-"2 51п-4- =( — 1) при п=4й — 2(ЙЕЩ, то а =2 2, и Гй — 2~ л 2! соз й — 1 !+2с 12 ~1 2)~ )О, если 4й — 1<!<4Й4-1, (й 11 '(2, если 4й+ ! < 5 < 4Й+3. к=! !й — 2!2г с помощью единичной функпии 2) можем представить функцию ( в виде у(!) = 2 ) ( — 1) 2)(! — 2й — 1).

Таким образом, к=о 1 — Ф 22 ( — 1) О(! — 2й — 1). М рсйр =о Найти изображения функций. 729. ((1) = йп256. м Воспользуемся теоремой 1, п. 3.3. Разлагая функци!о 1 в степенной Ряд, получаем 5!п252! = 2 (-!)" !"'! ='Р(р). .—.о (2п+ 1) Согласно решению примера 683, имеем (2п 4 1)152л ! 2Ф и!22 к!р"+т Следовательно, ~Ф) = Е(-1)" »=о п)р" к ! 1Р— -~',(-1)" —,— =- -е к, и р »=о и' р р 730.

у(!) = —. со5252! 2! < Из разложения к мк-1 со5222! (-!)222»!к ! (2Й)! и соотношении 1! ! Г (Й+ 2) (2Й вЂ” 1)112/л (2Й)!2!»л 2 — ' к -' ькй р 2 2 р 2 Й!225 2 находим о получено разложение в ряд Фурье на сегменте [О, 4) функции (О, если 4й — ! < ! < 4Й+1, ,( 2, если 4й+ 1 < С < 4Й+ 3, по косинусам кратных дуг. действительно, коэффициенты Фурье ак,оля функции 1 вычисляются по формулам Гл.

7. Метод ннтегралыная преобразований Лапласа 731 У(С) = С?2«(2ч?С), где 2„(х) = ~ (-1)~(-~ «о лева) функция 1-и? рода и-го порядка. н Подставляя в формулу для 2„(х) вместо х аргумент (?С)"+?« ((с) = ст 2„(2чС) = С ? ~ (-!)' й!Г(и+ у+ ! Принимая во ю?имание решение примера 682, имеем Г(а + й + 1) р «««? 1 — цилиндрическая (бессей!(и+ й)! 2??гС, получим ( 1)«С«ы ) -Е,,(„„,1) Следовательно, )« ? 7!1 «(И Г(С)=~ ( !) = — 2 ( — 1) — = — е У, пЕ??.о.м — Р ? «=о "' Р"+ 734. ° Г'(С) = м Воспользуемся решением предыдущего примера, полагая там и = 1.

Получаем ! ! Ст,7,(2«?С) =' — е о. р? По формуле интегрирования изобрахгеиия (теорема 1О, и. 1.2) находим ? «ы Г !ту (2ч?С) Г е о ?Сд 11+'« ф/ — =еГ~=! — ер. / (Г? г Таким образом, ? Г(С)=,! — е У и. 4 4. Линейные дифференциальные уравнения и системы 4.1. Интегрирование уравнений е постоянными коэффициентами. Пусть дано дифференциш?ьное уравнение 4"у 4"-'у Ау Ьу = ао — -Ьа? — „+ ... + а„-? — + а у = Г(С) «СС" АС"-' ''' " 4С и начальные условия А(р))г(р) = Р(р) + В(р), (3) где А(р) н В(р) — известные многочлены. Решая зто уравнение, найдем операторное решение Р(р) + В(р) А(р) д(О) = у„й?(О) = у, ..., Уи '(О) = у' (2) Считаем, что ао ~ О и функция г", а также решение у(С) вместе с его производными до п-«о порядка являются оригиналами.

Характеристики

Тип файла
DJVU-файл
Размер
4,52 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6549
Авторов
на СтудИзбе
300
Средний доход
с одного платного файла
Обучение Подробнее