1612725170-9c968fc10e8fee5a326602fe967c8a7f (828895), страница 6
Текст из файла (страница 6)
® ᥬ¥©á⢮ U[0,θ℄ , ¯à®¡ë¥ äãªæ¨¨ g1 (t) = t,g2 (t) = t2 .h′ (t)|t=2α22222§3. ¥â®¤ ¬ ªá¨¬ «ì®£® ¯à ¢¤®¯®¤®¡¨ï.ãªæ¨îf (θ) = f (θ, X ) :=nYi=1fθ (Xi ),f (θ) = f (θ, X ) :=nYi=1¢ ¡á®«îâ® ¥¯à¥à뢮¬ á«ãç ¥pθ (Xi ),¢ ¤¨áªà¥â®¬ á«ãç ¥ §®¢¥¬ äãªæ¨ï ¯à ¢¤®¯®¤®¡¨ï, äãªæ¨îL(θ) = L(θ, X ) := ln f (θ)12 §®¢¥¬ «®£ à¨ä¬¨ç¥áª ï äãªæ¨ï ¯à ¢¤®¯®¤®¡¨ï.楪ã θ∗ §®¢¥¬ (楪®©) ( ªá¨¬ «ì®£®) Ǒ(à ¢¤®¯®¤®¡¨ï),¥á«¨f (θ∗ ) = sup f (θ).θǑਬ¥à 1.Ǒਬ¥à 2. ® ᥬ¥©á⢮ a,σ . ® ᥬ¥©á⢮ α,λ á ¯«®â®áâìî2γα,λ (t) =αλ λ−1 −αtt e ,(λ )t ≥ 0.®£¤ äãªæ¨ï ¯à ¢¤®¯®¤®¡¨ï ¨¬¥¥â ¢¨¤L(α, λ) = −n ln(λ) + nλ ln α + (λ − 1) ᫨ λ ¨§¢¥áâ®, â® ®æ¥ª α∗=nXi=1ln Xi − αnX.λX¥áâì Ǒ ¤«ï ¯ à ¬¥âà α.Ǒਬ¥à 3.
® ᥬ¥©á⢮ U0,b , ⮣¤ b∗= X(n)|Ǒ ¤«ï ¯ à ¬¥âà b.Ǒਬ¥à 4. ® ᥬ¥©á⢮ Ua,a+1 , ⮣¤ «î¡ ï â®çª ¨§®â१ª [X(n) − 1, X(1) ℄ ¥áâì Ǒ ¤«ï ¯ à ¬¥âà a.Ǒਬ¥à 5. á¯à¥¤¥«¥¨¥ ¥àã««¨ á ¯ à ¬¥â஬ p. ãªæ¨ï ¯à ¢¤®¯®¤®¡¨ï ¨¬¥¥â ¢¨¤L(p) = nX ln p + (n − nX ) ln(1 − p)..¬.¯. ¨¬¥¥â ¢¨¤ p∗ = X .Ǒਬ¥à 6. á¯à¥¤¥«¥¨¥ Ǒã áá® á ¯ à ¬¥â஬ λ.L(λ) = −nλ + nX − C (X )..¬.¯. ¨¬¥¥â ¢¨¤ λ∗ = X .§4. à ¢¥¨¥ ®æ¥®ª.13楪 θ1∗ ¥ åã¥, 祬 ®æ¥ª θ2∗ , ¥á«¨ d21 (θ ) ≤ d22 (θ )¤«ï ¢á¥å θ ∈ , £¤¥ d2i (θ ) = Eθ (θi∗ − θ )2 | á।¥ª¢ ¤à â¨ç¥áª®¥®âª«®¥¨¥ ®æ¥ª¨.1. ¬¥â¨¬, çâ®d2 (θ) = Dθ θ∗ + b2 (θ),2.b(θ) := Eθ θ∗ − θ. ᫨ ®æ¥ª¨ θi∗ ïîâáï ... á ª®íä䍿¨¥â ¬¨ ®à¬ «ì®á⨠σi2 (θ ), â® ®æ¥ª θ1∗ ¥ åã¥, 祬 ®æ¥ª θ2∗ , ¥á«¨σ12 (θ) ≤ σ22 (θ) ¤«ï ¢á¥å θ ∈ .Ǒਬ¥à 1. ® ᥬ¥©á⢮ U0,θ . áᬮâਬ ¤¢¥ ®æ¥ª¨= X(n) , θ2∗ = 2X.θ1∗(X(n) < t) = θt n , EX(kn) = nnθ+k ¯®í⮬ã Dθ X(kn) =n θnθ(n+1) = (n+2)(n+1)4nθ = θ .d22 (θ) = n4 Dθ Sn = 12n3n ç¨â2θ 2θ222d1 (θ) =, d 2 (θ ) =,(n + 1)(n + 2)3n¯®í⮬ãd21 (b) ≤ d22 (b).nP2 2k22nθ 2n+2−222§225.
Ǒ®ï⨥ ãá«®¢®£® à á¯à¥¤¥«¥¨ï ¨ ãá«®¢®£®¬ ⥬ â¨ç¥áª®£® ®¨¤ ¨ï.Ǒãáâì ¤ ® ®¤®¬ ¢¥à®ïâ®á⮬ ¯à®áâà á⢥ (ξ, S ), £¤¥ξ |á«ãç © ï ¢¥«¨ç¨ , S = (S1 , ..., Sn )|á«ãç ©ë© ¢¥ªâ®à. áᬮâਬ ¤¢ ç áâëå á«ãç ï1) ¢¥ªâ®à S ¨¬¥¥â ¤¨áªà¥â®¥ à á¯à¥¤¥«¥¨¥.2) ¢¥ªâ®à S ¨¬¥¥â ¡á®«îâ® ¥¯à¥à뢮¥ à á¯à¥¤¥«¥¨¥.¯à¥¤¥«¨¬ äãªæ¨î à á¯à¥¤¥«¥¨ï: ¢ ¤¨áªà¥â®¬ á«ãç ¥F (x/y1 , ..., yn ) = P(ξ < x/ S= (y1 , ..., yn)),¢ ¡á®«îâ® ¥¯à¥à뢮¬ á«ãç ¥∂ n P(ξ<x, S <y ,...,Sn<yn )∂y ...∂yn.F (x/ã1 , ..., yn ) =∂ n P(S <y ,...,Sn<yn )11111∂y1 ...∂yn14â® äãªæ¨ï à á¯à¥¤¥«¥¨ï, § ¢¨áïé ï ®â ¯ à ¬¥âà (y1 , ..., yn).¯à¥¤¥«¨¬ á।¥¥E(ξ/y1, ..., yn) =Z∞−∞xdF (x/y1 , ..., yn ).Ǒ®ï⨥ ãá«®¢®£® ¬ ⥬ â¨ç¥áª®£® ®¨¤ ¨ï:E(ξ/S ) =Z∞xdF (x/y1 , ..., yn )|y1 ,...,yn=(S1 ,...,Sn)−∞ ª¨¬ ®¡à §®¬, ãá«®¢®¥ ¬ ⥬ â¨ç¥áª®¥ ®¨¤ ¨¥ ¥áâì äãªæ¨ï ®â S :E(ξ/S ) = g (S ).¢®©á⢠ã.¬.®., ª®â®àë¥ ¬ ¯® ¤®¡ïâáï: ᥠ᢮©á⢠¬ ⥬ â¨ç¥áª®£® ®¨¤ ¨ï, ¨§¢¥áâë¥ ¬, á®åà ïîâáï.
஬¥â®£®,1.EE(ξ/S ) = Eξ.®ª § ⥫ìá⢮ ¢ ¤¨áªà¥â®¬ á«ãç ¥.EE(ξ/S ) =Z∞−∞tdXsXg (s)P(S= s) =XZs−∞tdP(ξ < t/S(ξ < t/S = s)P(S = s) =Ps∞2. ᫨ η = η (S ), â®Z∞−∞= s)P(S = s) =tdP(ξ < t) = Eξ.(ηξ/S ) = η E(ξ/S ).®ª § ⥫ìá⢮ ¢ ¤¨áªà¥â®¬ á«ãç ¥.EEη (s)3.Z(ηξ/S ) =∞−∞E(ξ/S ))2 /S ).∞−∞tdP(η (S )ξ < t/SttdP(ξ </Sη (s)η (s)(ξ/S ) =DZE= s)|s=S == s)|s=S = η (S )E(ξ/S ).(ξ 2/S ) − (E(ξ/S ))2, £¤¥(ξ/S ) :=DǑ® ®¯à¥¤¥«¥¨î,(ξ/S ) := E((ξ − E(ξ/S ))2/S ),D15E((ξ −¤ «¥¥|¯®ïâ®.4. «ï «î¡®© äãªæ¨¨ η = η (S ) ¢ë¯®«ï¥âáïE(ξ − η (S ))2 ≥ E(ξ − E(ξ/S ))2 = ED(ξ/S ).®ª § ⥫ìá⢮.E((ξ − η (S ))2 /S ) = E((ξ )2 /S ) − 2η (S )E(ξ/S ) + E(η 2(S )/S ) =((ξ )2/S ) − 2η (S )E(ξ/S )+ η 2(S ) ≥ E((ξ − E(ξ/S ))2/S ) := D(ξ/S ),¯®í⮬ãEE(ξ − η (S ))2 = EE((ξ − η (S ))2 /S ) ≥ ED(ξ/S ).Ǒਬ¥à 1.(X1 /X ) = X.®ª § ⥫ìá⢮.
祢¨¤®, çâ®EE(X1 /X ) = E(X2 /X ) = ... = E(Xn/X ),â ª çâ®E1(X1 /X ) = (E(X1 /X )+...+E(Xn /X )) = E(X/X ) = X E(1/X ) = X.n§6. ©¥á®¢áª¨© ¯®¤å®¤ ª ®æ¥¨¢ ¨î ¯ à ¬¥â஢.1. ©¥á®¢áª¨© ¯®¤å®¤. Ǒãáâì ¥¨§¢¥áâë© ¯ à ¬¥âà θ á«ãç ¥ á ¯à¨®àë¬ à á¯à¥¤¥«¥¨¥¬ Q á ¯«®â®áâìî q (t) ®â®á¨â¥«ì® ¬¥àë λ(dt). 㤥¬ §ë¢ âì ®æ¥ªã θB∗ ¡ ©¥á®¢áª®©®æ¥ª®© ¯ à ¬¥âà θ (¯à¨ ¯à¨®à®¬ à á¯à¥¤¥«¥¨¨ Q), ¥á«¨¤«ï «î¡®© ¤à㣮© ®æ¥ª¨ θ∗ = θ∗ (X ) ¢ë¯®«ï¥âáï2E(θ −θ )∗=Z2Et (θ −t) q (t)λ(dt) ≥∗ZEt(θB∗ −t)2 q (t)λ(dt) = E(θB∗ −θ)2 .¯®áâ¥à¨®à®© ¯«®â®áâìî θ §ë¢ îâ äãªæ¨î1q (t/x1 , ..., xn ) =ft (x1 )...ft (xn )q (t),c(x1 , ..., xn )£¤¥ äãªæ¨ï c(x1 , ..., xn ) â ª®¢ , çâ®Zq (t/x1 , ..., xn )λ(dt) = 1.16®£¤ E(θ/ X ) =Ztq (t/X1 , ..., Xn )λ(dt)|ãá«®¢®¥ ¬ ⥬ â¨ç¥áª®¥ ®¨¤ ¨¥ á«ãç ©®© ¢¥«¨ç¨ë θ®â®á¨â¥«ì® S = X = (X1 , ..., Xn ).¥®à¥¬ 1.
«ï «î¡®© ®æ¥ª¨2E(θ − θ )∗Z=ZEtθ∗ ¢¥à®(θ∗ − t)2 q (t)λ(dt) ≥( (θ/X ) − t)2 q (t)λ(dt) = E(E(θ/X ) − θ)2 = ED(θ/X ).Et E ª¨¬ ®¡à §®¬,θB∗= E(θ/X ).Ǒਠí⮬ZEt(θB∗ − t)2 q (t)λ(dt) = ED(θ/X ),¥áâì á।¥¥ ¤¨á¯¥àᨨ á«ãç ©®© ¢¥«¨ç¨ë®áâìî q (t/x1 , ..., xn ).θ(x1 , ..., xn ) á ¯«®â-®ª § ⥫ìá⢮ á«¥¤ã¥â ¨§ ᢮©á⢠4 ãá«®¢®£® ¬ ⥬ â¨ç¥áª®£® ®¨¤ ¨ï.Ǒਬ¥à 1.
X1 |®à¬ «ì ï á.¢. á® á।¨¬ a ¨ ¥¤¨¨ç®©¤¨á¯¥àᨥ©, a|®à¬ «ì ï á.¢. á® á।¨¬ 0 ¨ ¤¨á¯¥àᨥ© σ2 .®£¤ ¯®áâ¥à¨®à ï ¯«®â®áâì q (t/X ) ª ª äãªæ¨ï à£ã¬¥â t ¯à®¯®à樮 «ì äãªæ¨¨exp(−Ǒ®áª®«ìªã−t2−2σt2−2σn1X(X − t)2 ).2 i=1 int21X(Xi − t)2 = − (1/σ2 + n) + Xnt + h1 (X ) =2 i=12−1Xn)2 + h1 (X ),(1/σ2 + n)(t −21/σ2 + n17â® ¯®áâ¥à¨®à ï ¯«®â®áâì q (t/ X ) ¥áâì ¯«®â®áâì ®à¬ «ì®£® § ª® á® á।¨¬ 1/σXn+n ¨ á ª ª®©â® ¤¨á¯¥àᨥ©. ç¨â,2E(a/X ) =Xn1/σ2 + n=X.1 + 1/(nσ2 )¢¥«¨ç¨ á à ¢®¬¥àë¬ ®â१ª¥ [0, 1℄ à á¯à¥¤¥«¥¨¥¬.
®£¤ ¤«ï α := 1 + nX , β :=1 + n(1 − X )Ǒਬ¥à 2.Xi ∈ Bp , p|á«ãç © ïq (t/X1 , · · · , Xn ) =(α + β ) α−1t (1 − t)β−1 ,(α) (β )¯à¨ t ∈ [0, 1℄.Ǒ®í⮬ãE(p/X ) =Z 10t(α + β ) α−1t (1 − t)β−1 dt =(α) (β )(α + β + 1) α(α + 1) (β ) (α + β )t (1 − t)β−1 dt=(α + 1) (β )(α + β + 1) (α) (β )0(α + 1) (α + β )(α + 1) (β ) (α + β )==(α + β + 1) (α) (β )(α + β + 1) (α)α (α)α(α + β )1 + nX=.=(α + β ) (α + β ) (α)α+β2+n2. ¨¨¬ ªáë¥ ¯®¤å®¤ (⮫쪮 ®¯à¥¤¥«¥¨¥). 㤥¬ §ë¢ âì ®æ¥ªã θ∗ ¬¨¨¬ ªá®©, ¥á«¨ ¢ë¯®«ï¥âáïZ 1tsup Et(θ∗ − t)2 ≤ sup Et(θ∗ − t)2t∈t∈¤«ï «î¡®© ¤à㣮© ®æ¥ª¨ θ∗ .§7.
®áâ â®çë¥ áâ â¨á⨪¨. Ǒ®«ë¥ áâ â¨á⨪¨.ää¥ªâ¨¢ë¥ ®æ¥ª¨.â â¨á⨪ S = S (X ) §ë¢ ¥âáï ¤®áâ â®ç®© áâ â¨á⨪®©,¥á«¨ ãá«®¢®¥ à á¯à¥¤¥«¥¨¥Pθ(X ∈ A/S )18¥ § ¢¨á¨â ®â θ.S (X )á⨪ ¡ë(¥©¬ -¨è¥à )«ï ⮣®, ç⮡ë áâ â¨¡ë« ¤®áâ â®ç®©, ¥®¡å®¤¨¬® ¨ ¤®áâ â®ç®, çâ®-¥®à¥¬ 1.nY1fθ (xi ) = ψ (S (x1 , ..., xn ), θ)h(x1 , ..., xn ).®ª § ⥫ìá⢮|⮫쪮 ¤®áâ â®ç®áâì, ¨ ⮫쪮 ¢ ¤¨áªà¥â®¬á«ãç ¥.Pθ (X = (x1 , ..., xn ), S (X ) = s)Pθ (X = (x1 , ..., xn )/S (X ) = s) ==Pθ (S (X ) = s)Pθ (X = (x1 , ..., xn ))I{S (x ,...,xn)=s}Pθ (S (X ) = s) ᨫã ä ªâ®à¨§ 樨Pθ (X = (x1 , ..., xn ))I{S (x ,...,xn )=s} = ψ (s, θ )h(x1 , ..., xn ),Pθ (S (X ) = s) =XXPθ (S (X ) = s, X = (y1 , ..., yn )) =ψ (s, θ)h(y1 , ..., yn ).11(y1 ,...,yn)S ((y1 ,...,yn ))=sǑ®í⮬ãPθ(X = (x1 , ..., xn )/S (X ) = s) =¥ § ¢¨á¨â ®â θ.Ǒਬ¥à 2.
a,σ .Ǒਬ¥à 3. U0,b .Ǒਬ¥à 4. λ .ǑãáâìI{S (x1 ,...,xn)=s} h(x1 , ..., xn )S ((y1 ,...,yn))=s h(y1 , ..., yn )P2= {θ∗ : Eθ θ∗ = θ + b(θ)}|ª« áá ®æ¥®ª ᮠᬥ饨¥¬ b(θ). ¯à¨¬¥à, K0 |ª« áá ¥á¬¥é¥ëå ®æ¥®ª. 楪 θ∗ ∈ Kb §ë¢ ¥âáï íä䥪⨢®©¢ ª« áᥠKb , ¥á«¨ ¤«ï «î¡®© ¤à㣮© ®æ¥ª¨ θ∗∗ ∈ Kb ¢¥à®∗2∗∗2Eθ (θ − θ ) ≤ Eθ (θ − θ ) .¥¬¬ 1.
Ǒãáâì b(θ ) = cθ |«¨¥© ï äãªæ¨ï, ¨ ®æ¥ª θ ∗1 θ∗ï¥âáï íä䥪⨢®© ¢ ª« áᥠKb . ®£¤ ®æ¥ª θ1∗ = 1+áKb«¥¨â ¢ ª« áá¥K0 ¨ ï¥âáï íä䥪⨢®© ¢ í⮬ ª« áá¥.19®ª § ⥫ìá⢮. ¡®§ 稬 ¤«ï θ1∗∗ ∈ K0 ®æ¥ªã θ∗∗ = (1 +c)θ1∗∗ ∈ Kcθ ®£¤ (1 + c)2 Eθ (θ1∗ − θ)2 = Eθ (θ∗ − (1 + c)θ)2 = Eθ (θ∗ − θ)2 + R(θ),(1 + c)2 Eθ (θ1∗∗ − θ)2 = Eθ (θ∗∗ − (1 + c)θ)2 = Eθ (θ∗∗ − θ)2 + R(θ),£¤¥ äãªæ¨ï R(θ) ¥ § ¢¨á¨â ®â ®æ¥ª¨ ¨ ¨§¢¥áâ  ( ©â¨).S | ¤®áâ â®ç ï áâ â¨á⨪ , θ∗ ∈ Kb .Eθ (θ /S ) ¥áâì ®æ¥ª (¥ § ¢¨á¨â ®â θ ) ¨ ¤«ï¥®à¥¬ 2. Ǒãáâ쮣¤ ¤«ï=¢á¥å θ ∈ á¯à ¢¥¤«¨¢®θS∗∗1. θS∗ ∈ Kb ,2. θS∗ ¥áâì äãªæ¨ï ®â S ,3.
Eθ (θS∗ − θ)2 ≤ Eθ (θ∗ − θ)2 ¬¥ç ¨¥ 1. ¯ 3 à ¢¥á⢮ ¢®§¬®® ⮣¤ ¨ ¨ ⮫쪮⮣¤ , ª®£¤ Pθ (θ ∗ = θS∗ ) = 1 ¤«ï ¢á¥å θ ∈ .®ª § ⥫ìá⢮. Ǒ¥à¢ë¥ ¤¢ ᢮©á⢠®ç¥¢¨¤ë.Eθ(θ∗ − θ)2 = Eθ (θS∗ − θ + θ∗ − θS∗ )2 =(θS∗ − θ)2 + Eθ (θ∗ − θS )2 + 2Eθ (θS∗ − θ)(θ∗ − θS∗ ).Ǒ®áª®«ìªãEθEθEθâ®(θS∗ − θ)(θ∗ − θS∗ ) = Eθ Eθ ((θS∗ − θ)(θ∗ − θS∗ )|S ) =(θS∗ − θ)Eθ ((θ∗ − θS∗ )|S ) = Eθ (θS∗ − θ)(θS∗ − θS∗ ) = 0,(θ∗ − θ)2 = Eθ (θS∗ − θ)2 + Eθ (θ∗ − θS )2 ,¨ ᢮©á⢮ 3 ¤®ª § ®.â â¨á⨪ S (X ) §ë¢ ¥âáï ¯®«®© ¤«ï ᥬ¥©á⢠{Fθ ; θ ∈}, ¥á«¨ ¤«ï «î¡®© ¨§¬¥à¨¬®© äãªæ¨¨ g (S ) ¨§ à ¢¥á⢠Eθ g (S ) ≡0 ¤«ï ¢á¥å θ ∈ á«¥¤ã¥â Pθ (g (S ) = 0) ≡ 1 ¤«ï ¢á¥å θ ∈ .¥¬¬ 2. ᫨ áâ â¨á⨪ S = S (X ) ï¥âáï ¯®«®©, ⮤«ï ¤¢ãå ®æ¥®ª θi∗ = fi (S ) ∈ Kbi , i = 1, 2 ¨§ à ¢¥á⢠ᬥ饨©b1 (θ) ≡ b2 (θ) á«¥¤ã¥â à ¢¥á⢮ ®æ¥®ª Pθ (θ1∗ = θ2∗ ) ≡ 1.®ª § ⥫ìá⢮ ®ç¥¢¨¤®.Eθ¥®à¥¬ 3.
Ǒãáâì∗θ ∈ Kb . ®£¤ ®æ¥ª ¢ Kb .θS∗=S | ¯®« ï ¤®áâ â®ç ï áâ â¨á⨪ ,Eθ (θ ∗ /S )| ¥¤¨á⢥ ï íä䥪⨢ ï20®ª § ⥫ìá⢮. Ǒãáâì θ∗ , θ∗∗ ∈ Kb | ¤¢¥ íää¥ªâ¨¢ë¥ áâ â¨á⨪¨ ¢ ª« áᥠKb . ᨫã ⥮६ë 2θ∗= θS∗ , θ∗∗ = θS∗∗ . ᨫ㠫¥¬¬ë 2 ®¨ ᮢ¯ ¤ îâ.®ª ¥¬, çâ® θS∗ |íä䥪⨢ ï ®æ¥ª . Ǒãáâì θ∗∗ ∈ Kb . ®£¤ ¯® ⥮६¥ 2 θS∗∗ ∈ Kb , ¨ ¢ ᨫ㠫¥¬¬ë 2 θS∗∗ = θS∗ .
®£¤ ¯®â¥®à¥¬¥ 2Eθ(θS∗ − θ)2 = Eθ (θS∗∗ − θ)2 ≤ Eθ (θ∗∗ − θ)2 .¥®à¥¬ 3 ¤®ª § .Ǒਬ¥àë.1. X1 ∈ a,1 , S = nX |¯®« ï ¤®áâ â®ç ï áâ â¨á⨪ |á¬,§ ¤ çã 11.2.2. X1 ∈ Eα S = nX |¯®« ï ¤®áâ â®ç ï áâ â¨á⨪ |á¬.áâà 19.3. X1 ∈ U0,θ S = X(n) |¯®« ï ¤®áâ â®ç ï áâ â¨á⨪ |¤®ª § âì á ¬®áâ®ï⥫ì®.§8. ¥à ¢¥á⢮ ®-à ¬¥à . R-íää¥ªâ¨¢ë¥ ®æ¥ª¨. ¯®¬¨¬ ®¡®§ 票ï:l(θ) = l(X1 , θ) := ln fθ (X1 ),L(θ) = L(X, θ) :=a(θ) = Eθ θ∗nXk =1l(Xi , θ),= θ + b(θ), θ ∈ ,£¤¥ |¨â¥à¢ « ¢¥é¥á⢥®© ®á¨.á«®¢¨¥q(R).
ãªæ¨ï fθ (x) ¤«ï ¯.¢. § 票© x ¥¯à¥à뢮 ¤¨ää¥à¥æ¨à㥬 ¯®θ ¨ ¨ä®à¬ æ¨ï ¨è¥à I (θ) = Eθ (l′ (X1 , θ))2(2)θ ∈ .(¥à ¢¥á⢮ ®-à ¬¥à ) ᫨ θ∗ ∈ Kb , Eθ (θ∗ )2 ≤ª®¥ç , ¯®«®¨â¥«ì ¨ ¥¯à¥àë¢ ¯®¥®à¥¬ 1.c < ∞, ¨ ¢ë¯®«¥ë âà¨ à ¢¥á⢠(à ¢¥á⢮ (5) á«¥¤ã¥â ¨§(4))21Eθ θ∗L′ (θ) = a′ (θ),(θ) = 0,′2Eθ (L (θ )) = nI (θ ),′Eθ Lâ®Dθ θ ᫨θ∗= const ¨«¨ ¥á«¨∗≥(3)(4)(5)(1 + b′ (θ))2.nI (θ)L(X, θ) = θ∗ A(θ) + B (θ) + h(X ),â® ¢ ¥à ¢¥á⢥ ®-à ¬¥à ¤®á⨣ ¥âáï à ¢¥á⢮.®ª § ⥫ìá⢮.
¬® ï (4) a(θ) ¨ ¢ëç¨â ï ¥£® ¨§ (3),¯®«ã稬a′ (θ) = Eθ (θ∗ − a(θ))L′ (θ).¥à ¢¥á⢮ ®è¨ ¤ ¥â:(a′ (θ))2 ≤ Eθ (θ∗ − a(θ))2 Eθ (L′ (θ))2 .¥à ¢¥á⢮ ®-à ¬¥à ¤®ª § ®. ᫨ ¥L(X, θ) = θ∗ A(θ) + B (θ) + h(X ),â®L′ (X, θ) = θ∗ A′ (θ) + B ′ (θ),®âªã¤ ¢ ᨫã ⮣®, çâ®′Eθ Lá«¥¤ã¥â, çâ®(X, θ) = 0, B ′ (θ) = −a(θ)A′ (θ),L′ (X, θ) = (θ∗ − a(θ))A′ (θ).âáî¤ á«¥¤ã¥â, çâ® ¢ ¥à ¢¥á⢥ ®è¨ ¢ë¯®«ï¥âáï à ¢¥á⢮. ç¨â, ¨ ¢ ¥à ¢¥á⢥ ®-à ¬¥à ¢ë¯®«ï¥âáï à ¢¥á⢮. ¥®à¥¬ ¤®ª § . ¬¥ç ¨¥.¡/¤ ᫨ θ∗ ∈ Kb , ¢ë¯®«¥® ãá«®¢¨¥ (R) ¨Eθ (θ ∗ )2 ≤ c < ∞, â® à ¢¥á⢠(3)|(5) ¨¬¥îâ ¬¥áâ®.22¯à¥¤¥«¥¨¥. 楪 θ∗ ∈ Kb §ë¢ ¥âáï R-íä䥪⨢®©,¥á«¨ ¤«ï ¥¥ ¢ ¥à ¢¥á⢥ ®-à ¬¥à ¤®á⨣ ¥âáï à ¢¥á⢮:Dθ θ∗=22Eθ (θ − θ ) − b (θ )∗â.¥.Eθ(θ∗ − θ)2 =(1 + b′ (θ))2=,nI (θ)(1 + b′ (θ))2 2+ b (θ).nI (θ)Ǒãáâì X ¨§ α,1 .
á«®¢¨¥ (R) ¢ ¬®¥á⢥ =(δ, ∞) ¯à¨ δ > 0 ¢ë¯®«¥®.0. ª ¯à®¢¥à¨âì ¯®«®âã áâ â¨á⨪¨ S (X ) = nX ? â á«ãç © ï ¢¥«¨ç¨ ¨¬¥¥â à á¯à¥¤¥«¥¨¥ α,n, ¯®í⮬ã ᢮©á⢮¯®«®âë ¢ë⥪ ¥â ¨§ â ª®£® ä ªâ : ¥á«¨ ¤«ï ¥ª®â®à®£® ¨â¥à¢ « (a, b) ∈ (0, ∞) ¤«ï ¢á¥å α ∈ (a, b)Ǒਬ¥à 1.g^(α) :=Z∞0e−αx g (x)dx = 0,g (x) = 0 ¤«ï ¢á¥å x ≥ 0.®ª ¥¬ íâ®. Ǒãáâì α0 ∈ (a, b)|䨪á¨à®¢ ï â®çª .â®§ 稬f (x) := e−α0 x g (x),¡®-f+ (x) := e−α0 x g+ (x),f− (x) := e−α0 x g− (x), g+ (x) := g (x)I{g(x)≥0} , g− (x) := −g (x)I{g(x)<0} ,â ª çâ® f (x) = f+ (x) − f− (x).
ãªæ¨¨ f+ (x), f− (x) ¥®âà¨æ ⥫ìë ¨ ¤«ï ¨åc :=Z0∞f+ (x)dx =Z∞0f− (x)dx.Ǒ®í⮬ã äãªæ¨¨ p± (x) := 1c f± (x) ïîâáï ¯«®â®áâﬨ. ᨫã ãá«®¢¨ï g^(α) = 0 ¯à¨ α ∈ (a, b) «¨â¨ç¥áª ï äãªæ¨ï g^(α +iβ ) ¢ ¯®«®á¥ α ∈ (a, b) ⮤¥á⢥®à ¢ 0. Râ® ®§ ç ¥â, çâ®R ∞ iβxå à ªâ¥à¨áâ¨ç¥áª¨¥ äãªæ¨¨ 0 e p+ (x)dx, 0∞ eiβx p− (x)dx ᮢ¯ ¤ îâ. ç¨â, ᮢ¯ ¤ îâ ¨ à á¯à¥¤¥«¥¨ï, ®â¢¥ç î騥 í⨬å à ªâ¥à¨áâ¨ç¥áª¨¬ äãªæ¨ï¬.