Roland A. - PVD for microelectronics (779636), страница 77
Текст из файла (страница 77)
See Back-end-of-line (BEOL) processstepsBinding energy, 34Bipolar arching, 96Bit count per chip ("K"), 13Blackbody irradiation, 142Bohm presheath diffusion, 61Bohm presheath flux, 255Books on PVD, 17409410SUBJECT INDEXBread-loafing, 11-12Breakthrough technology, 13Broad angular emission distribution, 185BSA. See Backside-gas-assisted heat transferBSG. See Backside-gas-assisted heat transferBucking magnet hardware, 100Buyers' guides for PVD, 18CCapital equipment, 176Cathode surface models, 354-55Cathodic disintegration, 1CD-ROM, 18Central wafer handler, 118cgs units, 51Chemical mechanical polishing (CMP), 272, 332Chemical vapor deposition.
See CVD (chemicalvapor deposition)Child-Langmuir Law, 55-57Circular planar magnetrons, 72-73Clampless processing, 156-67Clamps, edge, 135, 156, 166Clean room, 164Cluster emission, 241Cluster tools, 83, 110--15generic, 115-18technology of, 118-71CMP. See Chemical mechanical polishingCoefficients of thermal expansion (CTE), 301Cold-hot processing, 238Collimated sputter deposition, 195-211collimator cleaning, 211collimator construction, 209-11drawbacks of, 201-6tool issues, 206-9Collimation, 98, 262, 278Computer searches for PVD, 17-18Computer simulation. See Process modeling formagnetron depostionComputer-capacity problem, 353Conduction cooling, 381,382Conferences on PVD, 18Conformal, 344Conformal cold layers, 238Conical magnetrons, 381Consumables costs, 179Consumer electronic products, 3Contact resistance, 278Contamination, 398-99CoO. See Cost-of-ownershipCopper (Cu), 331-39elevated-temperature PVD, 231-35Copper gaskets, 52Copper interconnects, 10Copper segregation, 395Cosine dependence, 31Cosine distribution, 34-38Cost per wafer (CPW), 1, 107, 180-81Cost productivity curve, 178Cost-of-ownership (COO), 1, 3, 16, 111, 113,346sputtering tools, 176-81and target utilization, 389-92Courses on PVD, 20CPW.
See Cost per waferCritical film attributes, 3Cross-talk, 348Cryopumps, 52, 122, 123, 125-27Crystal structure, 288Crystalline orientation, 37Crystallographic orientation in microstructuralengineering, 392, 393,394CSIRO, 365CTE. See Coefficients of thermal expansionCu. See CopperCVC Connexion, I11, 112, 113CVD (chemical vapor deposition), 5, 23, 278compared to PVD, 2(X), 240-47, 287and high-k film deposition, 376keyhole void, 189plasma assisted, 168and process modeling, 372and PVD, 114-15rapid thermal, 149and wafer degas, 130Cyclotron frequency, 69Cylindrical post planar magnetrons, 74-76DDamascene processing, 187-91Damascus, 188Dataquest, 3DC magnetrons, 1, 87-88, 105-6See also Planar magnetronsDC plasmas, 61-63, 82De-chucking, 161-63Debye length, 57, 60, 251SUBJECT INDEXDeep submicron devices, 238Degas, wafer, 130-31Degas/cool station, 118Degrees K (temperatures), 51, 58-59Deionized water, 382Dendrite growth, 399Density units, 51Deposition, 3Deposition and experimental results in ionizedmagnetron sputter deposition (I-PVD),260-61Deposition rate monitors, 83Device scaling theory, 5-6Diagnostics, plasma, 83-85Dielectric layers, 6-9Diffusion barriers, 262, 368Diffusion-pumped chambers, 52Diffusive transport of sputtered atoms, 4 2 4 6Diode plasmas, 53-59, 378Diode sputtering, 87Directional deposition, 185-213, 241,263collimated sputter deposition, ! 95-21 Idamascene processing, 187-9 !long-throw techniques, ! 91-95Directional filters, 195Disk approach.
See Molecular dynamics filmgrowth modelsDi.ssimilar sputtcr yiclds, 386Dopping, 3DRAMs, 2, 16Droplet emission, 83Dry etching, 103Dry pumps, 122, 123, 124Dual damascene, 188E X B drift, 69-75, 81,99e-beam deposition. See Electron-beam depositione-chucks.
See Electrostatic chucksECR (electron cyclotron resonance) plasmas,241-42, 249ECR (electron cyclotron resonance) techniques,25, 26, 136Edge clamps and rings, 135, 156, ! 66EDX analysis. See Energy dispersive X-ray(EDX) analysisElectrical measurements in ionized magnetron411sputter deposition (I-PVD), 278-80Electrical resistivity, 272Electrolytic corrosion, 382Electromagnets, 88, 90Electromigration (EM) resistance, 272, 294Electron bombardment, 141Electron cyclotron resonance.
See ECRElectron-beam deposition, 1, 3, 4, 104, 109information sources on, 17Electron-impact ionization, 63, 257-58Electronic publishing, 18Electrons in plasmas, 57-59Electroplating, 189Electrostatic chucks (ESCs), 151-52, 156-63,169Electrotech, 111, 112, 235Elevated temperature in planarized PVD,215-40of aluminum (AL), 220-31improvements to TSP AI, 227-31reflow AL, 220-23two-step process (TSP) AI, 223-27of copper (Cu), 231-35physics of, 216-20End users, 372Energetic neutrals, kinetic energy of, 141Energy analyzers, 251Energy and angular distributions of sputtcrcdatoms, 33-38Energy dispersive X-ray (EDX) analysis, 288Energy. See Kinetic energyEnvironmental concerns, 3ESCs.
See Electrostatic chucks (ESCs)Etching, 3eV (electron volts), 51, 58-59Evaporation sputtering, 87Evolution of PVD technology, 12-17Evolution of sputtering tools, 103-15Expansion contact method, 381Experimental systems in ionized magnetronsputter deposition (I-PVD), 241-50Factory automation, 113-14Fairchild Semiconductor, 106-7FEOL. See Front-end-of-line (FEOL) processstepsFerroelectrics, 41SUBJECT INDEX412Field return plate, 88Filed emission (FE) electron sources, 288Film stress, 288Flat panel displays, 95Flip chip technology, 248Floating potential in plasma, 59--60Flux to the sheath, 60-61ForcefillTM process, 215, 231,235-38Foreign matter, 163-68Forward sputtering, 36Frog-leg design, 170Front-end design, 117-18Front-end-of-line (FEOL) process steps, 5Full-wafer mapping, 288Future of PVD technology, 12-17High-k film deposition, 376High-pressure sputtering.
See ForcefillT M processHigh-rise architecture, 6High-vacuum planar magnetrons, 99Highend microprocessors, 9HIE See Hot isostatic pressingHistoric trends, 13Holding, wafer, 156-63Hollow cathode magnetrons, 76, 197, 250Home pages, 18Hot filament evaporation, 1Hot isostatic pressing (HIP)Hot PVD. See Elevated temperature in planarized PVDHydrocarbon contamination, 96-97Hysteresis problem, 77-80GGas atoms in plasmas, 57-59Gas delivery system, 167-68Gas pressure units (mTorr), 51Gas rarefaction, 47-48, 158-59Gas-phase scattering and impurities, 87, 135GDMS.
See Glow discharge mass spectrometryGeneric PVD cluster tools, 115-18Geometric applications of PVD, 11-12Global industries, 3, 19Global market, 1, 3-4Glow discharge mass spectrometry (GDMS),388Gold, 348Grain size, 296-97, 392-95Granular targets, 386Graphical user interfaces (GUI). 113GROFILMS rM, 233-34GUI. See Graphical user interfacesHHamaguchi model, 269Handbooks on PVD, 17Hazardous materials, 3Heat of condensation, 141Heat of neutralization, 141-42Heat of sublimation, 34Hi-Fill.
See Forcefill TM processHidden anodes, 80High pressure in planarized PVD, 215-40,235-39I-PVD. See Ionized magnetron sputter depositionIBM, 187, 242IC metallization, 106-7IC. See Integrated circuitICP. See Inductively coupled plasmaILD. See Interlayer dielectric (ILD)IMD (ionized magnetron deposition).
SeeIonized magnetron sputterdeposition (I-PVD)IMD. See lntermetal dielectric (IMD)IMP (ionized metal plasma). See Ionized magnetron sputter deposition (I-PVD)Incident angles, 30-33Incident Ar (argon) ions, kinetic energy of, 141Incident species, 23, 28Inductively coupled plasma (ICP), 136Industrial coating applications, 1Inert gas ions, 23, 28Information sources on PVD (physical vapor deposition) technology, 17-20Input/output (I/O) connections, 348Insulating films, 5Integrated circuitcross section, 5-6, 7, 9wiring, 7-8Integrated circuit (IC) fabrication technology, 1Intel Pentium chip, 5Interconnect lines, 6Interconnect metallization, 2, 4-5SUBJECT INDEXInterconnect roadmap of PVD (physical vapordeposition) technology, 12-17Interlayer dielectric (ILD), 6Intermetal dielectric (IMD), 6Internet, 18Ion acoustic velocity, 60Ion beam sputtering, 36Ionized magnetron sputter deposition (I-PVD),36, 241-84advantages of, 241deposition and experimental results, 260-61electrical measurements, 278-80experimental systems, 241-50filling trenches and vias, 268-78limits of, 266---68lining trenches and vias, 261-68materials properties, 280-82operating process, 250-51plasma aspects, 250-60Ions in plasmas, 57-59lsotropic sputtered flux, 185JJewelry, 188Journals on PVD, 17-18"K" (bit count per chip), 13K degrees (temperatures), 51, 58-59Kelvin resistance distribution, 278, 279, 280Keyhole void, 189Kinetic energy, 24-28, 34, 35of energetic neutrals, 141of incident argon ions, 141of sputtered atoms, 140-41See also EnergyKn.