Roland A. - PVD for microelectronics (779636), страница 65
Текст из файла (страница 65)
This is analogous to the RC time constantdelay introduced by a multilevei metal interconnect stack due to capacitivecoupting between adjacent metal lines in a given level.Based on such concerns. IC industry roadmaps show a trend away fromwirebonded leads and toward flip chip packaging technology in which thefull area of the chip is directly attached to the package [9.60]. In mostflip-chip applications, the wire bonds are replaced by small metallicbumps on the circuit side of the die. The connections from die to substrateare then made by flipping the chip circuit-side down onto the bondingpads and ref owing the underlying bump metallization.
Flip chip technology has been used in microelectronic production for many years: however, its increased use in advanced packaging affords a market opportunity for PVD. For example. workers have reported 19.611 that PVD is anattractive way of forming a popular. under bump metallurgy (UBM) thatis typically carried out in a batch mode using sequential e-beam evaporation of a chromium underlayer (Cr). a chromium-copper interlayer, and aCu overcoat layer. Using an S-GunThf sputter source with two independently powered.
ring cathodes - one made of Cr and the other made ofCu - it was possible to deposit the same CrICr-Cu/Cu stack within a single PVD module on a cluster tool. As with the e-beam evaporated stack,the PVD stack was a seamless structure without any interface evident between the layers.PVD MATERIALS AND PROCESSES349References9.1 B. Roberts, A. Harrus and R.
L. Jackson, "Interconnect metallization for future device geometries," Solid State Tech., 69-78 (Feb. 1995).9.2. L. C. Feldman and J. W. Mayer, Fundamentals 03" Surface and Thin Film Analysis, NorthHolland, New York, 1986.9.3. C. G. Masi, "Semiconductor surface analysis: Fifty flavors, and counting," R&D Magazine,24-26 (June 1996).9.4. P. K. Chu and R. S. Hockett, "New ways to characterize thin films," Semicond. Int., 142-146(June 1994).9.5. M. Dax, "Thin film metrology: Visible and UV based techniques," Semicond.
Int., 81-88 (Mar.1996).9.6. L. Savage, "National semiconductor metrology program travels roadmap to future needs," SolidState Tech., 46-51 (Dec. 1996).9.7. C. J. Morath, G. J. Collins, R. G. Wolf, and R. J. Stoner, "Ultrasonic multilayer metal filmmetrology," Semicond. Int., 85-92 (June 1997).9.8. W. Tsai, M. Delfino, J. A. Fair, and D. Hodul, "Temperature dependence of the electrical resistivity of reactively sputtered TiN films," J.
Appl. Phys. 73(9): 4462-4467 (1993).9.9. K. Ramkumar, S. K. Ghosh, and A. N. Saxena, "Aluminum Based Multilevel Metallizations inVLSI/ULSICs," in Handbook of Multilevel Metallization.fi~r httegrated Circuits, pp. 97-201,S. R. Wilson, C. J. Tracy, and J. L. Freeman Jr., Eds., Noyes Publications, Park Ridge, N J, 1993.9.10. B.A. Movchan and A. V. Dcmchishin, "Study of the structure and properties of thick vacuumcondensates of nickel, titanium, tungsten, aluminum oxide, and zirconium dioxide," Fiz. Metal.Metalloved.
28(4): 653-660 (1969).9.11. J.A. Thornton, "Intlucncc of apparatus geometry and deposition conditions on the structure andtopography of thick sputtered coatings," J. Vac. Sci. & ~,ch. A 11(4): 666 (1974).9.12. J. A. Thornton, "High rate thick tilm growth," Ann. Rev. Mat. S~'i. 7: 239-26(I (1977).9.13. Y. Paulcau, "'Interconnect lnatcrial,,, for VLSI circuit,,,," Solid State 7~'~h., I() 1-1()5 (June 1987).9.14. R.W. Bower, "'Characteristics of aluminum-titaniunl electrical contacts on silicon," Appl.
Phys.Lett. 23(2): 99-101 (1973).9.15. I. Krafcsik, C. J. Palmstrom, J. Gyulai, E. Colgan, E. C. Zingu, and J. Mayer, "Thin lilm interactions of Al and AI(Cu) on W and Ti," in Proc. of the Electro,'hem. Sot., vol. 83-1, extendedabstract no. 436, p. 681 (1983).9.16.
V. Hoffman, T. Wang, and D. Reedy, "Monitoring wafer temperature and wafer temperatureuniformity in cluster tools using Ti/AI monitors," Varian Associates Internal Technical Report(July 1995).9.17. R. Wilson, T. Hulsewch, and W. Krolikowski, "Development of a wafer level technique formonitoring and control of deposition temperature in high-vacuum physical vapor depositiontechnology," J. Vac.
Sci. & Tech. BIS(l): 122-126 (1997).9.18. S. M. Rossnagel, "Sputtered atom transport processes," IEEE Trans. on Plasma Science 18(6):878-882 (1990).9.19. S. K. Dew, "Processes and simulation for advanced integrated circuit metallization,'" Ph.D. thesis (University of Alberta, Edmonton, Canada, Fall 1992).9.20.
D. Liu, S. K. Dew, M. J. Brett, T. Janacek, T. Smy, and W. Tsai, "Experimental study and computer simulation of collimated sputtering of titanium thin films over topographical features,"J. Appl. Phys. 74(2): 1339-1344 (1993).9.21. S.-Q. Wang, J. Schlueter, C. Gondran, and T. Boden, "Step coverage comparison of Ti/TiN deposited by collimated and uncollimated physical vapor deposition techniques," J. Vac. Sci. &Tech. B14(3): 1846-1852 (May/June 1996).350R. POWELLAND S.
M. ROSSNAGEL9.22. J.-E. Sundgren, B. O. Johansson, A. Rockett, S. A. Barnett, and J. E. Greene, "TINx (0.6 < x <1.2): Atomic Arrangements, Electronic Structure, and Recent Results on Crystal Growth andPhysical Properties of Epitaxial Layers," in Physics and Chemistry of Protective Coatings, pp.95-115. W. D. Sproul, J. E.
Greene, and J. A. Thornton, Eds., AlP, New York, 1986.9.23. P. J. Martin, R. P. Netterfield, and W. G. Sainty, "Optical Properties of TiN x produced by reactive evaporation and reactive ion beam sputtering," Vacuum 32(6): 359-362 (1982).9.24.
I. Petrov, A. Myers, J. E. Greene, and J. R. Abelson, "Mass and energy resolved detection ofions and neutral sputtered species incident at the substrate during reactive magnetron sputtering of Ti in mixed Ar + N 2 mixtures," J. Vac. Sci. & Tech. A12(5): 2846-2854 (1994).9.25. S. Berg, H.-O. Blom, T. Larsson, and C. Nender, "Modeling of reactive sputtering of compoundmaterials," J. Vac.
Sci. & Tech. A5(2): 202-207 (1987).9.26. V.A. Koss, I. V. Ioffe, and A. Belkind, "Computational model of reactive sputtering," J. Vac.Sci. & Tech. All(3): 701-703 (1993).9.27. W. Tsai, J. Fair, and D. Hodul, "TiffiN reactive sputtering: Plasma emission, X-ray diffractionand modeling," J. Electrochem. Soc. 139(7): 2004-2007 (1992).9.28. P.
Carlsson, C. Nender, H. Barankova, and S. Berg, "Reactive sputtering using two reactivegases, experiments and computer modeling," J. Vac. Sci. & Tech. All(4): 1534-1539 (1993).9.29. C. E. Wickersham and J. E. Poole, "The effect of target temperature on reactive sputtering target parameters," Tosoh SMD, Technical Note 9.006A.9.30. M. Biberger, S. Jackson, G. Tkach, and L. Oueilet, "Adhesion and barrier layers for CVD tungsten and PVD aluminum filled contacts and vias of various aspect ratios," Semicond. FABTECH1: 197-203, 1994.9.31. W. Tsai, D. Hodul, T. Sheng, S. Dew, K. Robbie, M. J. Brett, and T.
Smy, "Variation of composition of sputtered TiN films as a function of target nitridation, thermal anneal, and substratetopography," Appl. Phys. Lett. 67(2): 220-222(1995).9.32. T. Perera, "Antireflective coatings - - An overview," Solid State Tech., 131-136 (July ! 995).9.33. C. Bencher, C. Ngai, B. Roman, S. Lian, and T. Vuong, "Dielectric antireflective coatings forDUV lithography," Solid State Tech., 109-114 (Mar. 1997).9.34.
M. Rocke and M. Schneegans, "Titanium nitride tor antireflection control and hillock suppression on aluminum silicon metallization," J. Vac. Sci. & Tech. B6(4): !113-1115 (1988).9.35. S. Chen, C. L. Chen, and S. Tsou, "Sputtered TiN performance as an anti-reflective coating inbackend sub-/xm i-line lithography process," in Proc. of the VLSI Multilevel InterconnectionConf., pp.
393-395 ( 1991 ).9.36. D. Liu, S. K. Dew, M. J. Brett, T. Smy, and W. Tsai, "Compositional variations in Ti-W filmssputtered over topographical features," J. Appl. Phys. 75( 12): 8114-8120 (1994).9.37. R. N. Tait, W. Tsai, D. Hodul, D. Su, S. K. Dew, M. J. Brett, and T. Smy, "CompositionalVariation of Sputtered Ti-W Thin Films on Topography: TEM/EDX Measurements and SIMBAD Simulations," in Advanced Metallization and Interconnect Systems for ULSI Applicationsin 1995, pp.
311-316, R. C. Ellwanger and S.-Q. Wang, Eds., Materials Research Society,Pittsburgh, PA, 1996.9.38. D. B. Bergstrom, E Tian, I. Petrov, J. Moser, and J. E. Greene, "Origin of compositional variations in sputter-deposited TiW~_ x diffusion barrier layers," Appl. Phys. Lett. 67(21):3102-3104 (1995).9.39. S. P. Murarka, Silicidesfor VLSIApplications, Academic Press, New York, 1983.9.40. E Mohammadi, "Silicides for interconnection technology," Solid State Tech., 65-72 (Jan.1981).9.41. M.-A.
Nicolet and S. S. Lau, "Formation and Characterization of Transition Metal Silicides,"pp. 329-464, in VLSI Electronics: Microstructure Science, Vol. 6, N. G. Einspruch and G. B.Larrabee, Eds., Academic Press, New York, 1983.PVD MATERIALS AND PROCESSES3519.42.
J. Winneri, "Silicides for high density memory and logic circuits," Semicond. Int., 81-86 (Aug.1994).9.43. K. Maex, "CoSi2: An attractive alternative to TiSi2," Semicond. Int., 75-80 (Mar. 1995).9.44. S. Ogawa, M. Lawrence, A. Dass, J. A. Fair, T. Kouzaki, and D. B. Fraser, "Epitaxial CoSi 2 filmformation on (100) Si by annealing of Co/Ti/Si structure in N2," Materials Research SocietySymp.