135890 (722728), страница 2

Файл №722728 135890 (Разработка методики программного тестирования цифровых устройств с помощью программного пакета Design Center) 2 страница135890 (722728) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

t2 - температура окружающей среды;

S Rт- суммарное тепловое сопротивление от источника тепла до его стока.

Rт = R + Rтс + Rтт



Тепловое сопротивление конструкции определяется из выражения: l

Rт = ---- , l S

где l - расстояние от источника тепла до его стока;

l - теплопроводность;

S - окружающая поверхность;

Из выражения видно, что конструкция силового модуля должна обладать:

кратчайшим расстоянием от источника тепла до его стока

(l должно быть минимальным);

максимальной площадью окружающей поверхности (S должно быть максимальным);

материал теплоотвода должен обладать максимальной теплопро­водностью (l должно быть максимальным).

Наиболее полно этим требованиям отвечает конструкция изде­лия, которая обладает:

- максимальной площадью поверхности при одновременном умень­шении ее объема;

- применением активных элементов с малым тепловым сопротив­лением, т.е. необходимо применить бескорпусные элементы;

- применением конструкции малокорпусных или бескорпусных пассивных элементов (трансформаторы, дроссели);

- применением алюминия, меди, окиси бериллия, керамики 22ХС и им подобных материалов.

Кроме того, такие конструкции обладают минимальной материа­лоемкостью, максимальной простотой монтажа, улучшенными электри­ческими параметрами.



КОНСТРУКТОРСКАЯ ЧАСТЬ

ТЕПЛОВОЙ РАСЧЕТ МИКРОМОДУЛЯ

Конструкторско-технологическая проблема миниатюризации сило­вых устройств заключается в необходимости создавать и применять специальные бескорпусные полупроводниковые приборы и микросхемы,

специальные намоточные детали и особые методы конструирования,

обеспечивающие плотную упаковку элементов и низкое внутренне те­пловое сопротивление конструкции.

На дюралюминиевой подложке МСБ (l3=4 мм, 190х130;

l= 170 Вт/м град) расположены дроссели диаметром 36 мм, мощностью 2,8 Вт; диоды диаметром 14 мм и мощностью 1,6 Вт каждый; транс­форматор диаметром 55 мм, мощностью 1,85 Вт; 10 транзисторов диа­метром 10 мм; мощностью по 0,83 Вт каждый, крепятся на медной пластине размером 55х67х2,7 мм.

Применение бескорпусных приборов позволяет уменьшить объем конструкции и довести его до величины полностью определяемой энергетическими соотношениями и условиями охлаждения.

В нашем случае мы рассматриваем тепловой расчет микроузла, который позволяет нам определить картину температурного поля ГИС с помощью расчета тепловых режимов и взаимовлияния элементов.

Примем условные обозначения:

Wi - удельная мощность рассеивания элемента, Вт/см2;

Wi max - максимальная удельная мощность рассеивания элемен­та, Вт/см2;

DQ - допустимая абсолютная погрешность перегрева, oС;

l - теплопроводность подложки, Вт/м - град;

l3 - толщина подложки, нм;

Rk - контактное тепловое сопротивление, м2 град/Вт;

Zo - эквивалентный радиус тепла, мм;

ro - эквивалентный радиус источника тепла, мм;

Pi - мощность источника тепла, Вт;

Si - площадь поверхности источника, мм2;



РАСЧЕТ ТЕМПЕРАТУРНОГО ПОЛЯ ИСТОЧНИКА ТЕПЛА

Экивалентный радиус подложки

Zo= 90 мм;

Эквивалентный радиус источника тепла ro=7 мм;

Критериальную величину рассчитываем по формуле:

|\\\\\\\\\

|\\\ / 17Zo2

j=? Bi = / --------- ;

? Rk7l7lз

|\\\\\\\\\\\\\\\

/ 17(9710-2)2

j = / ---------------- = 3,5; где Rk = 10-3,

? 4710-37170710-3

Bi - критерий Био;

j - критериальная величина.

Для нахождения критерия f необходимо определить отношение r/Zo.

Определяем функцию f(r/Zo,j) по таблице;

Y(r/Zo,j)=0,5064

При r=ro определяем тепловой коэффициент F(ro); отношение r/Zo,j= 0,7/9,0=0,078

1

F(ro)= ----- Y(r/Zo,r/Zo,j)

2l37l

F(ro) = 0,37 град/Вт

Температура в точке r=ro составляет

t(ro)7tc = P7F(ro)

t(ro) = 70,6 град

tc принимается равной to устройства и равно 70o.

Рассчитываем коэффициент F(r/Zo) для следующих точек:

r/Zo=0,2;0,3;0,6;1.

Из таблиц находим функцию Y для этих точек:

Y(0,2)=0,228 Y(0,6)=0,0376

Y(0,3)=0,136 Y(1)=0,0158

Тепловые коэффициенты равны:

F(0,2)=0,17 F(0,3)=0,10

F(0,6)=0,03 F(1,0)=0,012

Перегревы в этих точках составляют:

Q(0,2)=0,27 Q(0,6)=0,048

Q(0,3)=0,16 Q(1,0)=0,02

Вокруг каждого источника делаем окантовку - зону влияния элементов.

2.1.2 РАСЧЕТ ВЗАИМОВЛИЯНИЯ ЭЛЕМЕНТОВ

Для каждого i-того источника тепла рассчитывается влияние на близлежащие к центру этого источника точки y-х элементов схемы, которые хотя бы частично заключены в области прямоугольника i-то­го элемента.

Температура любой точки поверхности основания определяется по формуле:

Ki7Wi

Qi= ----- 2 e(q1r1) + Sign q27e(q2r1) + Sign r27e(q1r2) +

[

+ Sign q27Sign r27e(q2r2)2

]

q1 = d1' + |xo| r1 = d2' + |yo|

q2 = d2' - |xo| r2 = d2' - |yo|

qo = min q1r max q1r

K = ---------- , qc

D1 D2

где d1'= --- и d2'= ----

l3 l3

D1 и D2 - размеры источника тепла;

Кк - коэффициент качества конструкции; l3

Кк= -- . l

Xo, Yo - безразмерные координаты точки, в которой определяется перегрев в системе координат, центр которой совпадает с центром

i-того элемента, а оси /1-6/ сторонам i-того элемента;

xo = xo / l 3

e(q1r) = e1(qo) - e2(qok)

e1(qo) и e2(qok) даны в таблице.

Определим перегрев Q1-2 в ближайшей тоске влияния дросселя (элемента 2) на транзистор (элемент 1).

d1' = 27,5 / 4 хо = 4,75

d2' = 33,5 / 4 уо = 0

q1 = 11,65 r1 = 8,4

q2 = 2,15 r2 = 8,4

К1 = 1,4 К3 = 1,4

К2 = 4,0 К4 = 4,0

e (q1;r1) = 1

e (q2;r2) = 0,9726

e (q1;r2) = 1

e (q2;r2) = 0,9726

Q1-2 = 0,197

Перегрев в ближайшей точке влияния дросселя (элемент 2) на диод (элемент 3)

Q3-2=0,00003

Для остальных элементов:

Диод (элемент 3) Q1-3 = 6710-3 на транзистор

Стабилитрон (элемент 5) Q1-5 = 6710-3 (элемент 1)

Транзистор (элемент 1) Q2-1 = 3710-4 на дроссель

Диод (элемент 3) Q2-3 = 6,63710-2 (элемент 2)

Трансформатор (элемент 4) Q2-4 = 4710-4

Стабилитрон (элемент 5) Q2-5 = 3710-6

Транзистор (элемент 1) Q3-1 = 0 на диод

Трансформатор (элемент 4) Q3-4 = 1,6710-2 (элемент 3)

Дроссель (элемент 2) Q4-2 = 7710-6 на трансформа-

Стабилитрон (элемент 5) Q4-5 = 1,47710-3 тор (эл. 4)

Транзистор (элемент 1) Q5-1 = 7,8710-5 на

Дроссель (элемент 2) Q5-2 = 7710-4 стабилитрон

Диод (элемент 3) Q 5-3 = 4,44710-2 (элемент 5)

Трансформатор (элемент 4) Q 5-4 = 4,44710-2



РАСЧЕТ СОБСТВЕННЫХ ПЕРЕГРЕВОВ ЭЛЕМЕНТОВ

Определяем безразмерные параметры элементов схемы:

min(D 1i,D 2i) max(D1 i,D 2i)

qoi= ------------ и Ki= ------------

l3 min(D 1i,D 2i)

Удельная мощность рассеивания элементов равна

Wi = Pi / Si

Перегрев элементов под действием рассеиваемой мощности:

Q i = Kk7Wi7e (qoi,k)

Собственный перегрев состоит из перегрева элемента и перег­рева клея

Q ni = Q i + Q кл

Для транзисторов: qо т=6,875 Kт=1,2

Для трансформатора: qо тр=6,875 Kтр=1,0

Для диода: qо д=1,75 Kд=1,0

Для дросселя: qо др=4,5 Kдр=1,0

e 1(qо т)=0,9999 e 1(qо др)=0,99930

e 2(qо тр)=0,999952 e 1(qо д)=0,86863

e2(qо т Kт) = 0 e2(qо др Kдр)=0,0008

e2(qо тр Kт) = 4,5 e2(qо д Kд)=0,05077

Kk = 0,22710-4 м2 град/Вт

Wт = 0,224 Вт/см2

Wдр= 0,28 Вт/см2

Wтр= 0,08 Вт/см2

Wт = 1,02 Вт/см2

Перегрев элемента под действием рассеиваемой мощности:

Qт = 0,5710-5

Qдр= 0,6710-5

Qтр= 0,176710-5

Qд = 2,2710-5

Собственный перегрев элемента:

Qн т = 0,20955

Qн тр= 0,60002

Qн д = 2,12602

Qн др= 8,4006

2.1.4 ОПРЕДЕЛЕНИЕ ПОЛНЫХ ПЕРЕГРЕВОВ ЭЛЕМЕНТОВ

Полный перегрев элемента равен сумме собственного перегрева и перегревов, вызванных влиянием остальных элементов схемы.

Температура элементов с учетом влияния других элементов сос­тавит:

ti = toc + Qni

t1=70,46oC, t2=78,50oC, t3=72,14oC, t4=72,14oC, t5=70,80oC



1

Температура элементов таблица

Источник

влияния

Элемент, на который влияет

1

2

3

4

5

1

2

3

4

5

0,20

0,197

0,006

-

0,6 10-3

0,3710-3

8,40

0,076

0,4710-3

0,3710-5

-

0,3710-4

2,126

0,016

0,1710-5

-

0,7710-4

0,016

2,126

0,1710-5

0,156710-3

0,14710-2

0,0888

0,8888

0,60

Итого

0,457

8,477

2,142

2,142

0,779

0



КОНСТРУКТИВНЫЙ РАСЧЕТ ПЕЧАТНОЙ ПЛАТЫ

Материалы, используемые в качестве оснований для печатных плат (ПП), должны обладать совокупностью определенных свойств. К их числу относятся высокие электроизоляционные свойства, доста­точная механическая прочность и др. Все эти свойства должны быть стабильными при воздействии агрессивных сред и изменяющихся усло­вий. Кроме того, материал платы должен обладать хорошей сцепляе­мостью с токопроводящим покрытием, минимальным короблением в про­цессе производства и эксплуатации. Если платы изготавливаются из листового материала, то последний должен допускать возможность обработки резанием и штамповкой.

В качестве материала ПП используем листовой фольгированный материал - стеклотекстолит фольгированный марки СФ 2-50-2,0 ГОСТ 10316-70.

Выбор данного материала объясняется назначением и условиями работы микромодуля. Печатные платы из стеклотекстолита имеют

нужную устойчивость к механическим, вибрационным, климатическим

воздействиям по сравнению с платами из гетинакса. Физико-механи­ческие и электрические свойства сведены в таблицу

Характеристики

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6353
Авторов
на СтудИзбе
311
Средний доход
с одного платного файла
Обучение Подробнее