L06_09_2002 (722012), страница 3
Текст из файла (страница 3)
И уравнение Пуассона:
где ρ(x) – распределение зарядов.
Как правило при создании моделей эти уравнения значительно упрощаются за счет принимаемых допущений.
Поскольку исходные уравнения носят дифференциальную форму для их решения необходимо задать начальные условия. Для биполярных приборов с pn переходом в качестве граничных условий задаются либо концентрация неосновных носителей заряда на границе, либо значение инжекционного тока (тока неосновных носителей заряда) на границе при напряжении на заданном электронно-дырочном переходе:
Граничные условия можно задать и в таком виде:
т.е. задаются граничные концентрации, а напряжение на переходе определяется функциональной связью между концентрацией и высотой барьера.
Для того, чтобы записать граничные условия – зависимость концентраций неосновных носителей заряда от внешнего напряжения вернемся еще раз к вопросу о распределении носителей заряда в разрешенных зонах по энергиям.
Распределение электронов (дырок) по энергиям в разрешенных зонах определяется произведением плотности состояний на функцию распределения nn(E) = N(E)f(E) см. п.п. 1.2.4. Для невырожденных полупроводников c хорошей степенью точности можно считать, что в разрешенной зоне вероятность нахождения свободных носителей заряда в разрешенной зоне на высоких энергетических уровнях убывает с увеличением их энергии по экспоненте (в соответствии с распределением Больцмана), поэтому зависимость концентрации носителей от энергии имеет максимум вблизи дна зоны (он обусловлен произведением N(e)f(E) см. п.п. 1.2.4) и экспоненциальный спад в области высоких энергий. Потенциальный барьер pn перехода могут преодолеть только те основные носители (электроны nn или дырки pp) энергия которых равна или больше энергии потенциального барьера.
Будем считать что все приложенное внешнее напряжение U падает на pn переходе, тогда высота барьера Uбар = Uк – U см. (2.5). Связь граничной концентрации с высотой барьера должна иметь тот же вид, что и (2.4), поскольку при наложении напряжения Fn – Fp = qUбар = q(Uк - U):
Из (2.12) видно, что при приложении к переходу (диоду) прямого напряжения U>0 (часто говорят смещения, т.е смещения уровней Ферми пропорционального приложенному напряжению) концентрация неосновных носителей на границе возрастает экспоненциально с напряжением (происходит их инжекция из соседней области).
При приложении к переходу (диоду) обратного смещения U<0 концентрация неосновных носителей экспоненциально уменьшается, поскольку из соседней области носители перестают поступать, а все неосновные носители генерируемые теплом в этой области попав на границу ОПЗ подхватываются электрическим полем и перебрасываются в соседнюю область. Влияние увеличения высоты потенциального барьера на граничную концентрацию носителей заряда при обратном смещении на pn переходе иллюстрируют диаграммы рис. 2.11.
Рис. 2.11 Диаграммы, поясняющие влияние высоты потенциального барьера на переход электронов из n области в p область.
Поскольку при обратном напряжении уже в 1 В граничная концентрация неосновных носителей заряда становится чрезвычайно малой (меньше одного электрона (дырки) в 1 см-3), будем считать, что при обратных напряжениях на переходе превышающих 1 В граничные концентрации носителей заряда равны 0.
Из уравнений (2.12) легко можно определить значения напряжения на pn переходе по значениям граничных концентраций:
Эти уравнения можно рассматривать как еще одну форму записи граничных условий.
При использовании (2.12) и (2.13) следует помнить, что в полупроводниковых приборах с хорошей степенью точности удовлетворяются равенства nn0 ~ Nd , pp0 ~ Na , тогда pn0 ~ ni2/Nd и np0 ~ ni2/Na. Таким образом зная концентрации примеси мы всегда можем рассчитать равновесные концентрации основных и неосновных носителей и величину контактной разности потенциалов (2.3). Зная же величину приложенного напряжения определить граничные концентрации носителей заряда (2.12)
Рис. 2.12. Энергетическая диаграмма pn перехода, к которому приложено обратное (увеличивающее высоту барьера) напряжение батареи Uб.
На рис. 2.12 показана энергетическая диаграмма pn перехода, включенного в обратном направлении. Как видно из диаграммы при обратном включении электронные уровни соседних областей получают дополнительное смещение друг относительно друга на величину потенциальной энергии qUб, соответствующей напряжению внешней батареи. При этом уровни Ферми в соседних зонах расходятся на величину qUб в направлении соответствующем увеличению высоты барьера. Теперь для всей системы единого уровня Ферми нет, это отражает тот факт, что равновесие между ее частями нарушено и количество переходящих через барьер в противоположных направлениях носителей зарядов не будет равно.
Рассмотрим случай, когда полярность внешней батареи изменяется на противоположную и к переходу приложено прямое напряжение U>0 (рис. 2.13). При этом создаваемое внешней батареей электрическое поле уменьшает электрическое поле, создаваемое контактной разностью потенциалов и высота барьера уменьшается на величину напряжения батареи. Квазиуровни Ферми расходятся друг относительно друга на величину qU, но в другую сторону.
Как видно из (2.12) и рис. 2.13 прямое смещение в пределе ведет к исчезновению потенциального барьера, поэтому в пределе оно не может быть больше величины контактной разности потенциалов Uк. Действительно, в рассмотренной модели идеального pn перехода сопротивление примыкающих к переходу легированных областей полагалось равным нулю и ток через переход определялся только свойствами барьера, поэтому когда барьер исчезает (его сопротивление стремится к нулю), то ток через переход должен стремиться к бесконечности. Для реальных диодов он будет ограничиваться сопротивлением легированных областей на которых будет дополнительное падение напряжения и в результате прямое падение напряжения на диоде может превышать контактную разность потенциалов.
Рис. 2.13. Энергетическая диаграмма pn перехода, к которому приложено прямое (уменьшающее высоту барьера) напряжение батареи Uб.
При создании расчетной модели pn перехода примем ряд допущений (эту модель иногда называют моделью Шокли). Будем считать:
-
полагается, что концентрации носителей заряда и значения электрических полей по любому сечению образца постоянные, т.е. возможно применить одномерное рассмотрение задачи;
-
полагается, что приложенное к pn переходу внешнее напряжение падает в основном на области пространственного заряда и электрическое поле в примыкающих к переходу мало и им можно пренебречь;
-
полагается, что носители заряда проходят область пространственного заряда без рекомбинации, т.е. мы пренебрегаем генерационно-рекомбинационными процессами в области пространственного заряда, считая что токи создаваемые носителями заряда рекомбинирующими и возникающими за счет тепла в ОПЗ значительно меньше токов создаваемых переносом заряда через барьер как при прямом так и обратном включении перехода;
-
допускается, сто pn переход резкий, т.е. концентрация доноров и акцепторов на границе изменяется скачком (рис. 2.7);
-
допускается, что параметры материала как время жизни носителей заряда и их подвижность постоянные и не зависят от концентрации инжектированных носителей заряда. Поскольку постоянство параметров материала соблюдается при небольших уровнях инжекции будем считать, что в рассматриваемой модели соблюдаются условия: ∆p<
n0, ∆n<
n0.
Рассмотрим геометрию, когда p область находится слева n область справа (рис. 2.7), соответственно ось x направлена слева направо. Расчет выполним для о n области, распространив его результаты на p область (заменой соответствующих индексов). За начало координат примем границу области пространственного заряда, т.е. будем рассматривать только часть n область, в которой электрическое поле отсутствует. Поскольку принято, что ОПЗ носители заряда проходят без потерь, число входящих и выходящих из ОПЗ электронов и дырок с обеих сторон должно совпадать.
Для расчета воспользуемся уравнением непрерывности (2.66):
Для n области n>>p и соответственно см. (1.67): μ = μp , D = Dp. При принятых допущениях в рассматриваемой области (вне ОПЗ) E = 0. Поскольку рассматриваются статические характеристики, то можно считать что концентрация носителей заряда со временем не изменяется и ∂∆p/∂t =0.
Подставив соответствующие значения в уравнение непрерывности получим:
где Lp - диффузионная длина, характеризующая расстояние, на которое могут продиффундировать инжектированные неосновные носители заряда за время жизни. В данном рассмотрении будем считать, что диффузионная длина значительно меньше длины образца и инжектированные через переход носители не достигают второй границы рекомбинируя по дороге. Будем считать, что к pn переходу приложено внешнее напряжение U, соответственно граничные условия для решения уравнение (2.67) имеют вид:
Решение однородного уравнения второго порядка (1.67) имеет вид:
Положив x = 0 из условия (а) в (1.68) находим:
Из условия (б) в (1.68) находим B = 0. Таким образом решение имеет вид:
Физический смысл решения (2.71) очевиден: концентрация неосновных носителей заряда вблизи перехода определяется тем сколько их вошло из соседней области (она зависит от высоты барьера) и глубина их проникновения за счет диффузии зависит от значения их диффузионной длины, т.е., в конечном счете, их времени жизни, подвижности и температуры.
На рис. 2.14 показано, соответствующее (2.71) распределение носителей заряда при положительном (кривая 1) и отрицательном (кривая 2) смещении на переходе. При положительном смещении на переходе граничное значение превышает равновесную концентрацию и имеет место инжекция неосновных носителей заряда. При отрицательном смещении (|U| >UT) граничная концентрация примерно равна нулю, все подходящие к ОПЗ неосновные носители перебрасываются в соседнюю область, а из соседней области носители не поступают, поскольку высота барьера много больше их тепловой энергии см. рис. 2.12.
Как видно из (1.67) уравнение непрерывности свелось к диффузионному уравнению и следовательно ток вблизи барьера в n-области будет, в основном диффузионным.
Из рис. 2.14 видно, что при положительном и отрицательном смещении градиент концентрации вблизи перехода имеет разный знак и соответственно при положительном смещении диффузионный ток направлен от перехода вглубь n - (имеет место инжекция неосновных носителей заряда), при отрицательном смещении направление тока изменяется на противоположное и происходит вытягивание неосновных носителей заряда
Рис. 2.14. Распределение носителей заряда в приконтактной области при положительном (кривая 1) и отрицательном (кривая 2) включениях pn перехода.
Рассчитаем плотность дырочного тока, проходящего через барьер при x = 0:
Аналогично, решая диффузионное уравнение для n области, можно получить плотность электронного тока (при этом все значки "p" изменяются на "n", значки "n" изменяются на "p"):
Поскольку через барьер перенос тока осуществляется только электронами и дырками и должно сохраняться условие постоянства тока по всей длине образца, то полный ток получим взяв его значение в любом сечении. Рассчитаем ток положив x=0:
Формула (2.74) описывает зависимость тока через pn переход от приложенного к нему напряжения, т.е. статическую вольтамперную характеристику pn перехода. Соответствующие ей графики в линейном и логарифмическом масштабах были показаны на рис. (при феноменологическом выводе этой же формулы)
Экспоненциальная зависимость, как неоднократно отмечалось, следует из больцмановского распределения электронов по энергиям. Действительно, чем выше барьер, тем меньшее количество электронов может его преодолеть. Инжекционный ток состоит из электронной и дырочной компонент, соотношение между которыми зависит от соотношения между токами Jsp и Jsn и определяется электропроводностью и временем жизни неосновных носителей заряда в соответствующих областях. Действительно использовав переход от коэффициента диффузии к подвижности Dn=(kTμn)/q, Dp=(kTμp)/q) (соотношение Эйнштейна) и (2.72) и (2.73) получим:
Таким образом, если p область легирована значительно сильнее донорной Na>>Nd и соответственно σp>>σn, то при близких значения времен жизни Jsp>>Jsn и ток через переход будет создаваться преимущественно дырками, причем величина этого тока зависит от величины прямого смещения.
Таким образом создав в кристалле pn переход мы формируем потенциальный барьер, который дает средство для управления током. Причем изменяя степень легирования областей мы можем задавать условия для преимущественного протекания через барьера электронных или дырочных потоков. Именно эти свойства избирательного управления потоками носителей заряда легли в основу большей части биполярных приборов.
При значительном обратном смещении высота барьера настолько велика, что тепловой энергии для преодоления барьера становится недостаточно и тогда в уравнении (2.74) начинает доминировать второй член: Js = Jsn + Jsp. Этот член соответствует потоку неосновных носителей заряда, встречному по отношению к только что рассмотренному диффузионному потоку основных носителей заряда. Для, создающих обратный ток перехода неосновных носителей, нет барьера и поэтому те из них, которые дошли до перехода подхватываются электрическим полем и перебрасываются в соседнюю область. Именно отсутствием для этих носителей барьера объясняется то, что в рассмотренной модели обратный ток не зависит от приложенного напряжения. Обратный ток пропорционален концентрации неосновных носителей заряда, темп генерации неосновных носителей определяется температурой, поэтому его часто называют тепловым:
Как следует из (2.76) обратный ток экспоненциально зависит от температуры. Наличие обратного тока ухудшает вентильные свойства pn перехода, поэтому его стремятся уменьшить взяв материал с большей запрещенной зоной. Так, например, в переходах на основе Si обратный ток примерно в тысячу раз меньше, чем в переходах на основе Ge. Однако, как следует из (2.76) сам ток с увеличением Eg уменьшается, однако его зависимость от температуры становится сильнее (см. аналогичные температурные зависимости для σi на рис. 1.1).
2.4. Влияние генерационно-рекомбинационных процессов на ВАХ pn перехода.
Из (1.74) для обратных токов электронов и дырок мы можем написать:
Физический смысл правой части уравнения (2.77) заключается в том, что обратный ток создается неосновными носителями, генерируемыми в примыкающих к области пространственного перехода области n и p баз диода на расстоянии диффузионных для от него. Предполагалось, что генерацией неосновных носителей заряда в обедненной области длиной d можно пренебречь. Это условие действительно справедливо для случай когда Lp>>d или Ln>>d или когда высока концентрация pn0, np0, т.е. ширина запрещенной зоны не очень велика (например в Ge). Однако для таких материалов как Si и GaAs генерационно-рекомбинационный ток в ОПЗ может быть сравним с током насыщения диода, создаваемым np и pn.
Для обратного тока, возникающего за счет генерационно-рекомбинационных процессов в области пространственного заряда можно записать:
где ni - концентрация носителей заряда в ОПЗ (допускается, что его проводимость близка к собственной), τeff - эффективное время жизни электронно-дырочных пар в ОПЗ, w(U) - ширина ОПЗ.
Для оценки эффективного времени жизни носителей в ОПЗ можно воспользоваться следующей формулой:
Ширина ОПЗ рассчитывается следующим образом:
0>