L06_09_2002 (722012), страница 2
Текст из файла (страница 2)
Рассмотрев основные явления, связанные с возникновением в pn переходе потенциального барьера и его влияния на транспорт носителей заряда, приступим к количественному описанию цель которого заключается в построении математической модели, которая могла бы связать электрические характеристики перехода с технологическими параметрами областей и температурой окружающий среды.
Используя соотношения, полученные в предыдущем разделе запишем соотношения для расчета основных и неосновных носителей заряда в p и n областях через значения уровня Ферми в соответствующих областях (рис. 2.6). Обозначим равновесные концентрации индексом 0.
Используя (2.2) возьмем отношения nn0/np0 и pp0/pn0, после логарифмирования получим:
Откуда рассчитаем разность уровней Ферми и используя (2.1) получим:
Эта формула однозначно связывает высоту потенциального барьера (при отсутствии внешнего напряжения) с концентрациями носителей в прилегающих к переходу областях, и наоборот концентрации носителей вблизи pn перехода с напряжением на нем:
где ut=kT/q. Уравнение (2.4) можно рассматривать как граничные условия при нулевом внешнем напряжении U = 0.
Поскольку концентрация основных носителей примерно равна концентрации легирующей примеси (pp0 = Na, nn0 = Nd), и произведение равновесных концентраций электронов и дырок в одной области при заданной температуре равно квадрату концентрации собственных носителей заряда nn0pn0=pp0np0=ni2 (11/19) , то из (2.3) получим:
Таким образом потенциальный барьер в pn переходе тем выше, чем сильнее легированы p и n области. Соответствующая зависимость Uк от степени легирования областей показана на рис. 2.8.
Рис. 2.8. Зависимость контактной разности pn перехода уровня легирования областей pn перехода (Si, Т=300 К)
Из формулы (2.4) следует, что чем сильнее легированы области pn перехода, тем больше контактная разность потенциалов. С физической точки зрения это понятно: с увеличением степени легирования p области уровень Ферми приближается к валентной зоне, с увеличением степени легирования n области уровень Ферми приближается к зоне проводимости, в то же время как следует из диаграммы рис. 2.6 контактная разность равна разности уровней Ферми в изолированных p и n областях.
Диаграмма рис. 2.8 показывает, что при увеличении степени легирования областей контактная разность в пределе стремится к ширине запрещенной зоны Eg.
По мере роста температуры величина ni2 в (2.4) должно достигнуть постоянной величины NdNa. Таким образом выражение под знаком логарифма стремится к нулю, т.е. контактная разность потенциалов с ростом температуры уменьшается.
Этот результат понятен с физической точки зрения, поскольку с увеличением температуры возрастает вероятность межзонного возбуждения электронов, т.е. при высоких температурах начинает доминировать собственная проводимость как в p, так и в n области. Поскольку в собственных полупроводниках уровень Ферми лежит вблизи середине запрещенной зоны qUк = Fn – Fp в конечном счете стремится к нулю, как это иллюстрирует рис. 2.9, рассчитанный по (2.4) с учетом того, что ni = √NcNv exp(-Eg/kT).
Зависимость контактной разности потенциалов pn переходов от температуры часто используют для создания датчиков температуры. По чувствительности эти датчики будут уступать датчикам, использующим температурную зависимость электропроводности полупроводников (термисторы), однако к их достоинствам можно отнести близкую к линейной зависимость контактной разности потенциалов от температуры, что значительно облегчает их калибровку.
Рис. 2.9. Зависимость контактной разности pn перехода от температуры при разном уровне легирования областей (Si - кривая 1: NdNa=1032 , кривая 2: NdNa=1028)
Еще раз остановимся на физической природе явлений, приводящих к возникновению на границе между p и n областями потенциального барьера. Если бы между p и n областями не было контакта, то каждая из них была бы электронейтральна, при этом соблюдались бы следующие условия: pp = Na-, nn = Nd+. При наличии между p и n областями контакта свободные электроны будут уходить из n области в соседнюю, оставляя вблизи границы в n области нескомпенсированный заряд положительных доноров - Nd+. Свободные дырки будут уходить из p области в соседнюю, оставляя вблизи гранцы в p области нескомпенсированный заряд отрицательных акцепторов - Na-. Поскольку доноры и акцепторы связаны с решеткой возникший двойной слой заряда так же встроен в решетку и не может перемещаться. При этом в области пространственного заряда (ОПЗ) возникает электрическое поле, направленное от n области к p области, препятствующее переходу основных носителей через границу областей. Чем больше переходит основных носителей, тем больше в нескомпенсированный заряд в ОПЗ, тем выше энергетический барьер, препятствующий переходу. Равновесие наступает при некотором соотношении между высотой барьера и концентрацией носителей заряда, которое описывается (2.3). При этом следует отметить, что в самой барьерной области (области пространственного заряда) концентрация носителей мала (она близка к собственной), поскольку все попадающие в ОПЗ носители выбрасываются из этой области электрически полем. Поэтому область пространственного заряда обладает проводимостью на несколько порядков меньшей, чем легированные p и n области. В дальнейшем будем считать, что сопротивление областей вне ОПЗ на несколько порядков меньше, чем сопротивление ОПЗ и если к полупроводниковой структуре с pn переходом приложено внешнее напряжение, то оно падает, в основном на ОПЗ, а в прилегающих к переходу p и n областях электрического поля практически нет (при построении модели происходящих процессов мы будем им пренебрегать).
Внимательно проанализировав диаграммы рис. 2.1 и 2.2 можно еще раз убедиться, что направление контактного электрического поля (Еконт) таково, что оно препятствует диффузии в соседнюю область основных носителей заряда и способствует переходу неосновных. Именно эта асимметрия потенциального барьера по отношению к носителям различного типа в конечном счете и приводит к асимметрии вольтамперной характеристики электронно-дырочного перехода относительно полярности внешнего напряжения. Поскольку при одной полярности внешнего напряжения поле внешней батареи будет складываться с внутренним полем Еконт, увеличивая барьер, при другом вычитаться, уменьшая барьер.
Лекция 7
2.3. Вольтамперная характеристика pn перехода
Если области pn перехода находятся при одной и той же температуре, при отсутствии приложенного к приложенного напряжения ток через него равен нулю, т.е. все потоки основных и неосновных носителей заряда компенсируют друг друга и встречные токи взаимно уравновешиваются. Однако, равновесие нарушается, если к диоду с pn переходом приложено внешнее напряжение. В этом случае обусловленное внешним источником напряжения электрическое поле складывается с внутренним контактным полем в переходе и, в зависимости от полярности внешнего источника, потенциальный барьере либо увеличивается либо уменьшается. При прямой полярности внешнего источника потенциальный барьер увеличивается и ток основных носителей заряда диффундирующих против электростатических сил поля pn перехода возрастает. При обратном включении внутреннее поле pn перехода складывается с внешним и величина потенциального барьера между p и n областями возрастает. Количество основных носителей способных преодолеть барьер уменьшается по мере роста высоты барьера и в конце концов становится равным нулю. Встречный ток Js создаваемый неосновными носителями, которые идут в направлении сил электростатического взаимодействия с полем pn перехода и для которых не существует потенциального барьера, при изменении высоты барьера остается постоянным, он не зависит от высоты барьера и его величина определяется только числом неосновных носителей попадающих в область пространственного заряда (np и pn).
Для того, чтобы на феноменологическом уровне описать вольтамперные характеристики диода с pn переходом допустим, что все приложенное к диоду внешнее напряжение падает на pn переходе. Поскольку сопротивление ОПЗ на несколько порядков выше, чем сопротивление толщи материала p и n областей и омических контактов к ним это допущение вполне оправдано. Тогда изменение величины барьера будет соответствовать величине приложенного напряжения. В соответствии с принятым ранее соглашением напряжение считается положительным, если плюс приложен к p области а минус к n, и отрицательны при обратной полярности внешнего напряжения относительно p и n областей. Тогда высоты барьера:
где Uк- контактная разность потенциалов, U – внешнее напряжение.
Баланс токов через переход можно записать в виде:
где ut = kT/q, иногда эту величину называют тепловым потенциалом, поскольку kT – соответствует максимуму кинетической энергии электронов при температуре T. При T = 300К ut ~ 26 мВ. Значение предэкспоненциального множителя в выражении для Jдиф принято равным Js, чтобы обеспечить при отсутствии напряжения на pn переходе равенство нулю общего тока.
Формула (2.6) удовлетворительно описывает ВАХ pn перехода и характеристики диода при малых токах, когда падение напряжения на прилегающих к переходу областях значительно меньше, чем падение напряжения на самом переходе. На рис. 2.10. показаны вольтамперные характеристики (слева в линейном масштабе, справа в логарифмическом), построенные по (2.6) при значении Js = 2 10-4 A .
При U>0 и U>ut единицей в (2.6) можно пренебречь и прямая ветвь pn перехода хорошо описывается экспоненциальной зависимостью J = Jsexp(U/ut).
Рис. 2.10. Вольтамперная характеристика pn перехода
Уравнение (2.6), описывающее вольтамперную характеристику pn перехода является феноменологическим, т.е. оно получено на основе рассмотрения явлений (явление – phenomena англ.) происходящих в диоде с pn переходом, но оно не дает нам возможности связать характеристику диода с электрофизическими параметрами его областей. К электрофизическим параметрам материала относятся те параметры, которые рассматривались в разделе 1, т.е. концентрация носителей заряда (примесей), время их жизни, подвижность и т.д. Уравнение (2.6) так же не дает ответ на вопрос о температурной зависимости тока, поскольку нам неизвестна температурная зависимость тока Js.
Для того, чтобы решать задачи устанавливающие количественную связь между характеристики полупроводникового прибора, его конструктивно-технлогическими параметрами и влиянием окружающей среды, необходимо создать количественную модель прибора. Для создания физико-математической модели необходимо записать уравнения связывающие между собой концентрации заряда, электрические токи (потоки) и электрический потенциал (или поле). Можно использовать три уравнения. Уравнение для тока как суммы диффузионного и дрейфового см. (1.57, 1.61):
Уравнение непрерывности см (1.66) , в дальнейшем будем рассматривать только одномерные модели, т.е. считать что концентрация носителей заряда, потенциала и всех параметров по сечению образца постоянны, тогда: