L06_09_2002 (722012), страница 2

Файл №722012 L06_09_2002 (Лекции по твердотельной электронике) 2 страницаL06_09_2002 (722012) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Рассмотрев основные явления, связанные с возникновением в pn переходе потенциального барьера и его влияния на транспорт носителей заряда, приступим к количественному описанию цель которого заключается в построении математической модели, которая могла бы связать электрические характеристики перехода с технологическими параметрами областей и температурой окружающий среды.

Используя соотношения, полученные в предыдущем разделе запишем соотношения для расчета основных и неосновных носителей заряда в p и n областях через значения уровня Ферми в соответствующих областях (рис. 2.6). Обозначим равновесные концентрации индексом 0.

(2.2)

Используя (2.2) возьмем отношения nn0/np0 и pp0/pn0, после логарифмирования получим:

Откуда рассчитаем разность уровней Ферми и используя (2.1) получим:

(2.3)

Эта формула однозначно связывает высоту потенциального барьера (при отсутствии внешнего напряжения) с концентрациями носителей в прилегающих к переходу областях, и наоборот концентрации носителей вблизи pn перехода с напряжением на нем:

, (2.4)

где ut=kT/q. Уравнение (2.4) можно рассматривать как граничные условия при нулевом внешнем напряжении U = 0.

Поскольку концентрация основных носителей примерно равна концентрации легирующей примеси (pp0 = Na, nn0 = Nd), и произведение равновесных концентраций электронов и дырок в одной области при заданной температуре равно квадрату концентрации собственных носителей заряда nn0pn0=pp0np0=ni2 (11/19) , то из (2.3) получим:

(2.4)

Таким образом потенциальный барьер в pn переходе тем выше, чем сильнее легированы p и n области. Соответствующая зависимость Uк от степени легирования областей показана на рис. 2.8.



Рис. 2.8. Зависимость контактной разности pn перехода уровня легирования областей pn перехода (Si, Т=300 К)

Из формулы (2.4) следует, что чем сильнее легированы области pn перехода, тем больше контактная разность потенциалов. С физической точки зрения это понятно: с увеличением степени легирования p области уровень Ферми приближается к валентной зоне, с увеличением степени легирования n области уровень Ферми приближается к зоне проводимости, в то же время как следует из диаграммы рис. 2.6 контактная разность равна разности уровней Ферми в изолированных p и n областях.

Диаграмма рис. 2.8 показывает, что при увеличении степени легирования областей контактная разность в пределе стремится к ширине запрещенной зоны Eg.

По мере роста температуры величина ni2 в (2.4) должно достигнуть постоянной величины NdNa. Таким образом выражение под знаком логарифма стремится к нулю, т.е. контактная разность потенциалов с ростом температуры уменьшается.

Этот результат понятен с физической точки зрения, поскольку с увеличением температуры возрастает вероятность межзонного возбуждения электронов, т.е. при высоких температурах начинает доминировать собственная проводимость как в p, так и в n области. Поскольку в собственных полупроводниках уровень Ферми лежит вблизи середине запрещенной зоны qUк = Fn – Fp в конечном счете стремится к нулю, как это иллюстрирует рис. 2.9, рассчитанный по (2.4) с учетом того, что ni = √NcNv exp(-Eg/kT).

Зависимость контактной разности потенциалов pn переходов от температуры часто используют для создания датчиков температуры. По чувствительности эти датчики будут уступать датчикам, использующим температурную зависимость электропроводности полупроводников (термисторы), однако к их достоинствам можно отнести близкую к линейной зависимость контактной разности потенциалов от температуры, что значительно облегчает их калибровку.



Рис. 2.9. Зависимость контактной разности pn перехода от температуры при разном уровне легирования областей (Si - кривая 1: NdNa=1032 , кривая 2: NdNa=1028)

Еще раз остановимся на физической природе явлений, приводящих к возникновению на границе между p и n областями потенциального барьера. Если бы между p и n областями не было контакта, то каждая из них была бы электронейтральна, при этом соблюдались бы следующие условия: pp = Na-, nn = Nd+. При наличии между p и n областями контакта свободные электроны будут уходить из n области в соседнюю, оставляя вблизи границы в n области нескомпенсированный заряд положительных доноров - Nd+. Свободные дырки будут уходить из p области в соседнюю, оставляя вблизи гранцы в p области нескомпенсированный заряд отрицательных акцепторов - Na-. Поскольку доноры и акцепторы связаны с решеткой возникший двойной слой заряда так же встроен в решетку и не может перемещаться. При этом в области пространственного заряда (ОПЗ) возникает электрическое поле, направленное от n области к p области, препятствующее переходу основных носителей через границу областей. Чем больше переходит основных носителей, тем больше в нескомпенсированный заряд в ОПЗ, тем выше энергетический барьер, препятствующий переходу. Равновесие наступает при некотором соотношении между высотой барьера и концентрацией носителей заряда, которое описывается (2.3). При этом следует отметить, что в самой барьерной области (области пространственного заряда) концентрация носителей мала (она близка к собственной), поскольку все попадающие в ОПЗ носители выбрасываются из этой области электрически полем. Поэтому область пространственного заряда обладает проводимостью на несколько порядков меньшей, чем легированные p и n области. В дальнейшем будем считать, что сопротивление областей вне ОПЗ на несколько порядков меньше, чем сопротивление ОПЗ и если к полупроводниковой структуре с pn переходом приложено внешнее напряжение, то оно падает, в основном на ОПЗ, а в прилегающих к переходу p и n областях электрического поля практически нет (при построении модели происходящих процессов мы будем им пренебрегать).

Внимательно проанализировав диаграммы рис. 2.1 и 2.2 можно еще раз убедиться, что направление контактного электрического поля (Еконт) таково, что оно препятствует диффузии в соседнюю область основных носителей заряда и способствует переходу неосновных. Именно эта асимметрия потенциального барьера по отношению к носителям различного типа в конечном счете и приводит к асимметрии вольтамперной характеристики электронно-дырочного перехода относительно полярности внешнего напряжения. Поскольку при одной полярности внешнего напряжения поле внешней батареи будет складываться с внутренним полем Еконт, увеличивая барьер, при другом вычитаться, уменьшая барьер.

Лекция 7

2.3. Вольтамперная характеристика pn перехода

Если области pn перехода находятся при одной и той же температуре, при отсутствии приложенного к приложенного напряжения ток через него равен нулю, т.е. все потоки основных и неосновных носителей заряда компенсируют друг друга и встречные токи взаимно уравновешиваются. Однако, равновесие нарушается, если к диоду с pn переходом приложено внешнее напряжение. В этом случае обусловленное внешним источником напряжения электрическое поле складывается с внутренним контактным полем в переходе и, в зависимости от полярности внешнего источника, потенциальный барьере либо увеличивается либо уменьшается. При прямой полярности внешнего источника потенциальный барьер увеличивается и ток основных носителей заряда диффундирующих против электростатических сил поля pn перехода возрастает. При обратном включении внутреннее поле pn перехода складывается с внешним и величина потенциального барьера между p и n областями возрастает. Количество основных носителей способных преодолеть барьер уменьшается по мере роста высоты барьера и в конце концов становится равным нулю. Встречный ток Js создаваемый неосновными носителями, которые идут в направлении сил электростатического взаимодействия с полем pn перехода и для которых не существует потенциального барьера, при изменении высоты барьера остается постоянным, он не зависит от высоты барьера и его величина определяется только числом неосновных носителей попадающих в область пространственного заряда (np и pn).

Для того, чтобы на феноменологическом уровне описать вольтамперные характеристики диода с pn переходом допустим, что все приложенное к диоду внешнее напряжение падает на pn переходе. Поскольку сопротивление ОПЗ на несколько порядков выше, чем сопротивление толщи материала p и n областей и омических контактов к ним это допущение вполне оправдано. Тогда изменение величины барьера будет соответствовать величине приложенного напряжения. В соответствии с принятым ранее соглашением напряжение считается положительным, если плюс приложен к p области а минус к n, и отрицательны при обратной полярности внешнего напряжения относительно p и n областей. Тогда высоты барьера:

, (2.5)

где Uк- контактная разность потенциалов, U – внешнее напряжение.

Баланс токов через переход можно записать в виде:

(2.6)

где ut = kT/q, иногда эту величину называют тепловым потенциалом, поскольку kT – соответствует максимуму кинетической энергии электронов при температуре T. При T = 300К ut ~ 26 мВ. Значение предэкспоненциального множителя в выражении для Jдиф принято равным Js, чтобы обеспечить при отсутствии напряжения на pn переходе равенство нулю общего тока.

Формула (2.6) удовлетворительно описывает ВАХ pn перехода и характеристики диода при малых токах, когда падение напряжения на прилегающих к переходу областях значительно меньше, чем падение напряжения на самом переходе. На рис. 2.10. показаны вольтамперные характеристики (слева в линейном масштабе, справа в логарифмическом), построенные по (2.6) при значении Js = 2 10-4 A .

При U>0 и U>ut единицей в (2.6) можно пренебречь и прямая ветвь pn перехода хорошо описывается экспоненциальной зависимостью J = Jsexp(U/ut).

Рис. 2.10. Вольтамперная характеристика pn перехода

Уравнение (2.6), описывающее вольтамперную характеристику pn перехода является феноменологическим, т.е. оно получено на основе рассмотрения явлений (явление – phenomena англ.) происходящих в диоде с pn переходом, но оно не дает нам возможности связать характеристику диода с электрофизическими параметрами его областей. К электрофизическим параметрам материала относятся те параметры, которые рассматривались в разделе 1, т.е. концентрация носителей заряда (примесей), время их жизни, подвижность и т.д. Уравнение (2.6) так же не дает ответ на вопрос о температурной зависимости тока, поскольку нам неизвестна температурная зависимость тока Js.

Для того, чтобы решать задачи устанавливающие количественную связь между характеристики полупроводникового прибора, его конструктивно-технлогическими параметрами и влиянием окружающей среды, необходимо создать количественную модель прибора. Для создания физико-математической модели необходимо записать уравнения связывающие между собой концентрации заряда, электрические токи (потоки) и электрический потенциал (или поле). Можно использовать три уравнения. Уравнение для тока как суммы диффузионного и дрейфового см. (1.57, 1.61):

(2.7)

Уравнение непрерывности см (1.66) , в дальнейшем будем рассматривать только одномерные модели, т.е. считать что концентрация носителей заряда, потенциала и всех параметров по сечению образца постоянны, тогда:

(2.8)

Характеристики

Тип файла
Документ
Размер
1,32 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6353
Авторов
на СтудИзбе
311
Средний доход
с одного платного файла
Обучение Подробнее