L01_05_2002 (722011)
Текст из файла
Воронков Э.Н. Твердотельная электроника. 2002г.
Московский энергетический институт
(технический университет)
ТВЕРДОТЕЛЬНАЯ ЭЛЕКТРОНИКА
Конспект лекций
Москва, 2002 г.
Содержание
Лекция 1 4
1. ОСНОВНЫЕ ПОНЯТИЯ ФИЗИКИ ПОЛУПРОВОДНИКОВЫХ МАТЕРИАЛОВ 4
1.1. Электропроводность полупроводников 4
Лекция 2 9
1.2. Электроны в кристалле 9
1.2.1. Энергетические зоны. Свободные носители зарядов: электроны и дырки. 9
1.2.3. Легирование кристаллов донорной или акцепторной примесью, полупроводники "n" и "p" типа . 22
Лекция 3 27
1.2.4. Расчет концентрации носителей заряда в кристалле. 27
Лекция 4 39
1.2.5. Зависимость скорости электрона от напряженности электрического поля. Понятия эффективной массы и подвижности. 39
1.2.6. Расчет электропроводности полупроводниковых кристаллов на основе рассмотренных моделей. 47
Лекция 5 55
1.2.7. Неравновесные электроны и дырки. Рекомбинация неравновесных носителей заряда. 55
Диффузионный и дрейфовый токи. 58
1.2.8. Уравнение непрерывности. 60
ВВЕДЕНИЕ
Современная научно-техническая революция и переход от индустриального к информационному обществу в значительной степени обусловлены повышением производительности интеллектуального труда за счет информационных технологий, материальную основу которых составляют твердотельные полупроводниковые приборы и устройства на их основе. Полупроводниковые приборы широко используются и в силовой электронике предоставляя эффективные способы преобразования и генерации электроэнергетических потоков. Поэтому курс полупроводниковой электроники стал одним из базовых курсов практически для всех специальностей электротехнического профиля и начинает изучаться сравнительно рано - на втором курсе. При этом имеется тенденция к его дальнейшему "омоложению" - к более раннему изучению разделов, связанных непосредственно с физикой электронных процессов в твердом теле, что предъявляет особые требования к доступности изложения сравнительно сложных электронных взаимодействий, позволяющих осуществлять управление электронными потоками в твердых телах и создавать современные устройства информационной и силовой электроники.
Основное содержание дисциплины составляет изучение принципов работы и характеристик основных приборов, являющихся базовыми для любых полупроводниковых приборов. Поскольку курс предназначен для подготовки инженеров, рассмотрение любых процессов в приборе, заканчивается составлением некоторой модели и выводом расчетных соотношений. Безусловно использованные модели являются упрощенными, однако тем не менее они позволяют связать параметры материалов и конструкции прибора с его характеристиками и позволяют оценить реакцию прибора на то или иное воздействие окружающей среды и, что особенно важно, способствуют установлению связи между разрозненными процессами и их свойствами и созданию некоторого обобщенного образа твердотельной электронной среды и сформированных на ее основе устройств. Именно последнее является наиболее важной и наиболее трудной задачей курса достижению которой способствует лабораторный практикум и расчетный проект.
Лекция 1
1. ОСНОВНЫЕ ПОНЯТИЯ ФИЗИКИ ПОЛУПРОВОДНИКОВЫХ МАТЕРИАЛОВ
1.1. Электропроводность полупроводников
По способности проводить электрический ток все твердотельные материалы принято делить на проводники, полупроводники и диэлектрики или изоляторы. К группе проводников относят материалы с проводимостью σ > 106 Ом-1см-1, к ним относятся металлы, в которых высокая проводимость обеспечивается высокой концентрацией электронов проводимости. Напротив в диэлектриках, как правило при комнатной температуре электронов очень мало и их проводимость, в основном носит ионный характер, поэтому она мала σ < 10-10 Ом-1см-1. В промежуточную группу попадают полупроводники, которые в зависимости от их состава и концентрации примесей могут иметь концентрацию электронов близкую к нулю (тогда они являются изоляторами) и близкую к концентрации электронов в металле (тогда они являются проводниками). Возможность изменять в широких пределах электропроводность не только технологическими методами, но и используя внешние воздействия, позволила создать на основе полупроводников твердотельные электронные приборы. Именно изучение этих приборов и используемых в них методов управления электронными потоками и составляет основное содержание данного курса.
Металлы и полупроводники помимо величины электропроводности отличаются так же и зависимостью электропроводности от температуры. В металлах электропроводность с температурой, как правило, падает почти по линейному закону .
где T и T0 – температуры измерения (T > T0), α – температурный коэффициент.
В полупроводниках, в которых отсутствуют дефекты и примеси (их принято называть собственными) с ростом температуры проводимость растет примерно по экспоненциальному закону:
где σ0 – некоторая слабо изменяющаяся величина (часто ее температурной зависимостью пренебрегают), ΔE – энергия температурной активации проводимости (ее принято измерять в эВ), k – постоянная Больцмана (8.614210-5 эВ.К-1), T - абсолютная температура (в градусах К). Если прологарифмировать (1.2), то получим:
Рис. 1.1. Зависимость электропроводности не легированных материалов от температуры
Из (1.3) видно - логарифм проводимости линейно зависит от 1/T, причем наклон прямой линии определяется величиной ΔE, поэтому для полупроводников графики электропроводности очень удобно строить откладывая по вертикальной оси проводимость в логарифмическом масштабе, а по горизонтальной оси величину пропорциональную обратной температуре (для удобства используют масштабный множитель 1000), см. рис. 1.1.
На следующем рисунке показана зависимость электропроводности собственного кремния от температуры при освещении его солнечным светом, подтверждающая сильное влияние внешних воздействий на свойства полупроводников.
Рис. 1.2. Влияние освещения на температурную зависимость электропроводности: 1 – зависимость измеренная в темное, 2 – на свету.
Изменение электропроводности может быть связано изменением концентрации носителей заряда и их скорости. Как показали эксперименты в большинстве случаев в полупроводниках основным фактором является изменение концентрации носителей заряда. Особенно сильно концентрация носителей заряда зависит от концентрации введенной примеси (обычно говорят от степени легирования). На рис. 1.3 показана измеренная на образцах кремния, легированных примесью фосфора или бора, зависимость удельного сопротивления кремния ρ = 1/σ от концентрации примеси. Из графика видно, что путем введения примеси проводимость полупроводника действительно можно изменять вплоть до проводимости близкой к металлической σ ≈ 104 (ρ ≈ 10-4).
Рис. 1.3. Влияние легирования на электропроводность кремния (пунктиром показана линейная зависимость).
Следует обратить внимание на тот факт, что при увеличении концентрации примеси на 9 порядков, проводимость образца возрастает на 8 порядков, т.е. существует почти линейная зависимость между проводимостью и концентрацией примеси.
Легирование влияет не только на величину электропроводности, но и на ее температурную зависимость, что демонстрируют кривые, приведенные на рис. 3.4. Как видно из графиков в области высоких температур электропроводность легированного материала стремится к электропроводности нелегированного. В области низких температур проводимость изменяется незначительно, имея слабо выраженный максимум. Для сильно легированных кристаллов проводимость изменяется с температурой подобно проводимости металлов.
Рис. 1.4. Температурная зависимость электропроводности легированных кристаллов, степень легирования в см-3 проставлена около соответствующих кривых, пунктирная линия соответствует нелегированному материалу.
Поскольку для создания полупроводниковых приборов с заданными характеристиками необходимо объяснить наблюдаемые особенности полупроводниковых материалов, научиться ими управлять и заранее прогнозировать поведение материала в тех или иных условиях, то необходимо создать модель описывающую процессы электропроводности полупроводников. Эта модель в первом приближении должна объяснять:
-
экспоненциальный рост проводимости с температурой для нелегированных материалов;
-
изменение проводимости и ее температурной зависимости при легировании полупроводников;
-
изменение проводимости и ее температурной зависимости при облучении полупроводников светом, бомбардировке высокоэнергетическими частицами и т.п.
По определению электропроводность характеризует изменение протекающего через образец тока при изменении приложенного к нему напряжения. В свою очередь величина электрического тока характеризуется количеством заряда переносимого через поверхность в единицу времени, т.е. для его характеристики необходимо знать концентрацию и скорость способных перемещаться зарядов. Таким образом приступая к изучению твердотельной электроники прежде всего необходимо рассмотреть процессы, которые приводят к появлению в однородном образце свободных носителей заряда и то как внешнее электрическое поле влияет на скорость их перемещения.
Контрольные вопросы.
-
Каково соотношение значений проводимости для проводников, полупроводников и диэлектриков?
-
Каково соотношение значений удельного сопротивления для проводников, полупроводников и диэлектриков?
-
Как экспериментально определить к какому классу материалов относится образец: к полупроводникам или металлам?
-
По какому закону изменяется с температурой электропроводность чистых (собственных полупроводников)?
-
Как влияет введение примесей на величину и температурную зависимость электропроводности полупроводников?
Лекция 2
1.2. Электроны в кристалле
1.2.1. Энергетические зоны. Свободные носители зарядов: электроны и дырки.
Известно, что первичными и единственными носителями заряда являются электроны и протоны. В вакууме и газах электроны и протоны могут быть свободными, в твердых телах и жидкостях электроны и протоны связаны с атомами и их заряды нейтрализуют друг друга.
Полупроводниковые кристаллы образуются из атомов, расположенных в определенном порядке. Естественно возникает вопрос, если в атоме электроны связаны с ядром, то откуда в состоящем из атомов кристалле берутся свободные заряды, способные перемещаться по кристаллу создавая электрический ток. Действительно, если представить атом как изолированный шарик, то тело полученное из миллиардов уложенных в правильном порядке шариков все равно останется изолятором, поскольку в нем способные переносить заряд не появятся. Для того, чтобы объяснить как в металлах и полупроводниках появляются свободные электроны необходимо использовать закономерности микромира. Впервые эти закономерности были использованы Бором для объяснения электронной структуры атома. Работы бора стимулировали работы по квантовой механике, которая в настоящее время используется для объяснения поведения электронов в атомах, молекулах и твердых телах.
Согласно современным представлениям атомы состоят из положительно заряженных ядер вокруг которых распложены заполненные электронами оболочки. При этом каждому электрону соответствует строго определенный уровень, на котором не может находиться более двух электронов с разными значениями спина, характеризующего вращение электрона. В магнитном поле этот уровень расщепляется на два близко расположенных уровня.
Согласно законам квантовой механики, электроны могут находиться только в строго определенных энергетических состояниях. Изменение энергии электрона возможно при поглощении или испускании кванта электромагнитного излучения с энергией, равной разности значений энергий на начальном и конечном уровне. Поэтому оптические спектры поглощения (или излучения) атомов, соответствующие электронным переходам на свободные дискретные уровни, так же должны быть дискретны, что и наблюдается в экспериментах (рис. 1.5.)
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.