181009 (685702), страница 3

Файл №685702 181009 (Економічне прогнозування) 3 страница181009 (685702) страница 32016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

а — рівень динамічного ряду при t = 0;

b — абсолютну швидкість зміни рівнів ряду (ординат);

2c — прискорення (прирощення абсолютної швидкості);

d — зміну прирощення тощо.

Поліном 1-го ступеня, тобто лінійний тренд Yt = a + bt, описує процеси, які рівномірно змінюються в часі і мають стабільні прирости ординат. Поліном 2-го ступеня (парабола) Yt = a + bt + ct2 здатний описати процес, характерною особливістю якого є рівноприскорене зростання або зменшення ординат. Форма параболи визначається параметром c: при c > 0 гілки параболи спрямовані вгору — парабола має мінімум, при c < 0 гілки параболи спрямовані вниз — парабола має максимум. При визначенні екстремуму (max, min) похідну параболи прирівнюють до нуля і розв'язують систему рівнянь відносно t. Наприклад, динаміка захворювань при епідемії грипу (чол.) описується параболою Yt = 264 + 45t - 1,5t2. Похідна параболи 45-2,25t = 0, a t = 20. Максимум захворювань буде зафіксовано через 20 днів від початку відліку часу (t = 0) і становитиме Ymах = 264 + 45 – 20 - 1,5 202 = 564 чол. У полінома 3-го ступеня Yt = a + bt + ct2 + dt3 знак прирощення ординати може змінюватися один чи два рази.

Якщо характерною властивістю процесу є стабільна відносна швидкість (темпи приросту), такий процес описується експонентою яка може набувати різних еквівалентних форм. Основна (показникова) форма експоненти

Yt = abt

де b — середня відносна швидкість зміни ординати: при b > 1 ордината зростає з постійним темпом, при b < 1, навпаки, зменшується. Абсолютний приріст пропорційний досягнутому рівню. Експоненту можна представити у формі:

або

де = lnb, е = 2,718 — основа натурального логарифма, lne = 1.

Експоненти приводяться до лінійного виду заміною yt десятковими або натуральними логарифмами:

lgY =lga + tlgb, |

lnY = lna + tlne = lna + t,

lnY = lnea + lnebt = lna + lnbt = lna + t .

Оцінювання параметрів трендових рівнянь найчастіше здійснюється методом найменших квадратів (MHK), основною умовою якого є мінімізація суми квадратів відхилень фактичних значень yt від теоретичних Yt, визначених за трендовим рівнянням :

.

Параметри поліноміального тренда визначаються безпосередньо розв'язуванням систем p + 1 нормальних рівнянь. Експонента, як показано вище, приводиться до лінійного виду логарифмуванням; розраховані параметри підлягають потенціюванню.

Виявлену тенденцію можна продовжити за межі динамічного ряду Така процедура називається екстраполяцією тренда. Принципова можливість екстраполяції ґрунтується на припущенні, що умови, які визначали тенденцію у минулому, не зазнають істотних змін у майбутньому. Формально операцію екстраполяції можна представити як визначення функції:

,

де Yt+v — прогнозне значення на період упередження v; — база екстраполяції, найчастіше це останній, визначений за трендом рівень ряду.

Екстраполяція тренда дає точковий прогноз. Очевидно, що «влучення в точку» малоймовірне. Адже тренду властива невизначеність, передусім через похибки параметрів. Джерелом цих похибок є обмежена сукупність спостережень yt, кожне з яких містить випадкову компоненту et,. Зсунення періоду спостереження лише на один крок веде до зсунення оцінок параметрів. Випадкова компонента буде присутня і за межами динамічного ряду, а отже, її необхідно врахувати. Для цього визначають довірчий інтервал, який би з певною ймовірністю окреслив межі можливих значень Yt + v Точковий інтервал перетворюється в інтервальний. Ширина інтервалу залежить від варіації рівнів динамічного ряду навколо тренда та ймовірності висновку (1 - а):

Де Sp — середня квадратична похибка прогнозу, значення якої залежить від дисперсії тренда та дисперсії відхилень від тренда . Зокрема, для лінійного тренда

.

Якщо база прогнозування — останній рівень ряду, то , a замінюється на . Після нескладних алгебраїчних перетворень похибку прогнозу за лінійним трендом можна представити так:

або, позначивши підкореневий вираз символом z, sp = sez.

Тобто похибка прогнозу залежить від залишкової дисперсії , довжини динамічного ряду (передісторії) n та періоду упередження v. Чим довший період передісторії, тим похибка менша, а збільшення періоду упередження, навпаки, веде до зростання похибки прогнозу.

    1. Прогнозування повних циклів

Свої особливості має моделювання динамічних процесів з ефектом насичення, коли темпи зростання (зниження) уповільнюються і рівень наближується до певної межі (питомі витрати ресурсів, споживання продуктів харчування на душу населення тощо). Для їх описування використовують клас кривих, що мають горизонтальну асимптоту . Найпростішою з-поміж них є модифікована експонента:

де параметр а — різниця між ординатою Yt, при t = 0 та асимптотою K. Якщо a < 0, асимптота знаходиться вище кривої, якщо a > 0 — асимптота нижче кривої. Параметр b характеризує співвідношення послідовних приростів ординати. За умови рівномірного розподілу ординати по осі часу ці співвідношення є сталими:

.

Модифікована експонента описує процеси, на які діє певний обмежувальний фактор, і вплив цього фактора зростає зі зростанням Yt. У разі, коли обмежувальний фактор впливає лише після певного моменту, до якого процес розвивався за експоненційним законом, то такий процес найкраще апроксимується S-подібною функцією з точкою перегину P, в якій прискорене зростання змінюється уповільненням. Наприклад, попит на новий товар попервах незначний; потім, після визнання споживачами, він стрімко зростає, але у міру насичення ринку темпи зростання уповільнюються, згасають. Попит стабілізується на певному рівні. Аналогічні фази розвитку мають процеси нововведень і винаходів, ефективність використання ресурсів тощо. З-поміж S-подібних кривих, що описують повний цикл розвитку, найпоширенішою є функція Перла-Ріда — логістична крива:

.

Якщо показник процесу — частка, що змінюється в межах від 0 до 1, то формула логістичної функції спрощується:

.

У страховій і демографічній статистиці використовують іншу S-подібну функцію — криву Гомперца: або в логарифмах

.

Тобто крива Гомперца приводиться до модифікованої експоненти, у якої сталими є відношення приростів ординат у логарифмах.

Оцінювання параметрів функцій, які мають асимптоти, порівняно з поліномами та експонентами значно складніше. Тут можливі два варіанти.

За першим варіантом асимптота у вигляді нормативу, стандарту тощо визначається апріорі — . Тоді модифіковану експоненту можна представити так:

.

Замінивши на z і прологарифмувавши рівняння, дістанемо лінійну функцію логарифмів lgz = lga + tlgb. Аналогічно приводиться до лінійного виду логістична функція , яка при заміні на z у логарифмах набуває такого ж вигляду: lgz = lga + tlgb. Параметри приведених до лінійного виду функцій, як і параметри поліномів, можна оцінити методом найменших квадратів.

Отже, клас моделей динаміки досить широкий, і вони описують різні процеси розвитку. Вибір типу моделі у конкретному дослідженні ґрунтується передусім на теоретичному аналізі специфіки процесу, його внутрішньої структури, взаємозв'язків з іншими процесами. Ha основі такого аналізу в загальних рисах визначається характер динаміки (рівномірний, рівноприскорений, з насиченням тощо) та окреслюється коло функцій, здатних апроксимувати цей процес. Серйозною підмогою при виборі конкретної моделі слугують формальні методи. Скажімо, для поліномів — це аналіз послідовних різниць. Рівність різниць р-го порядку розглядається як симптом того, що процес описується поліномом р-го порядку. Якщо приблизно однакові різниці 1-го порядку , використовують лінійний тренд, якщо однакові різниці 2-го порядку — — параболу і т. д. Певні складнощі можуть виникнути при виборі експоненти. Адже S-подібна крива до точки перегину описує експоненційний тренд, а сама точка перегину може бути за межами динамічного ряду. Отже, якщо межа насичення теоретично можлива і процес у майбутньому може згасати або існують певні обмеження для процесу (правові, матеріальних ресурсів, виробничих потужностей тощо), то перевага віддається S-подібній кривій.

Оскільки первинним рядам динаміки властива значна варіація рівнів yt то аналіз послідовних різниць більш коректно проводити на основі рядів ковзних середніх. У табл.2.2 наведено основні характеристики такого аналізу (апріорні тести), за якими визначається конкретний тип моделі повного циклу.

Таблица 2.2

Характеристика

Властивості характеристик

Тип трендової моделі

Приблизно однакові

Поліном 1-го ступеня

Лінійно змінюються

Поліном 2-го ступеня

Приблизно однакові

Експонента

Лінійно змінюються

Модифікована експонента

Лінійно змінюються

Логістична крива

Лінійно змінюються

Крива Гомперца

При зворотному напрямку тенденції різниці розраховуються, починаючи з кінця. За наявності від'ємних різниць логарифмування неможливе, тому необхідно збільшити інтервал згладжування ковзних середніх.

    1. Типи моделей взаємозв'язку

Усі явища навколишнього світу взаємопов'язані й взаємозумовлені. У складному переплетенні всеохоплюючого взаємозв'язку будь-яке з них є наслідком дії певної множини причин і водночас причиною інших явищ.

Логічний зміст і практичну значущість статистичних моделей взаємозв'язку слід розглядати саме в площині співвідношення причинності і зв'язків, що вимірюються статистичними методами. Суть причинності полягає в породженні одного явища іншим. Причина — активна основа, що примушує інше явище змінюватися. Сама по собі причина не визначає наслідку. Останній залежить і від умов, у яких діє причина. Через нерозрізненість причин і умов при моделюванні вони об'єднуються в одне поняття «фактор», а наслідок розглядається як результат дії факторів. Отже, в рамках моделі досліджується детермінованість результату факторами.

Методологічні проблеми побудови моделей взаємозв'язку можна об'єднати в дві групи:

  • формування ознакової множини моделі, себто визначення кількості факторів та їх числових еквівалентів;

  • модельна специфікація — вибір функціонального виду моделі, ідентифікація та оцінювання параметрів.

При формуванні ознакової множини моделі різноманітні прояви причинно-наслідкових зв'язків доцільно представляти візуально у вигляді спеціальних конструкцій — графів зв'язку, елементами яких е вершини та орієнтовані ребра (дуги). Вершини графа відповідають ознакам, а дуги показують відношення між ознаками. На рис. 2.1 ілюструється граф зв'язку чотирьох ознак. За дугами графа можна простежити систему відношень між ними: х впливає на у прямо, безпосередньо, z — прямо та опосередковано двома шляхами: та . У такій логічній конструкції ознака у є результатом, а х, z і — факторами, що визначають результат.



Граф відображує теоретично обґрунтовану систему відношень між ознаками. Кожна ланка цієї системи розглядається як окрема гіпотеза, що підлягає перевірці в подальшому аналізі на усіх етапах побудови моделі. Основна мета моделей взаємозв'язку - виявити і кількісно виміряти вплив факторів на результат. Очевидно, щоб визначити ефект впливу і-го фактора, необхідно елімінувати (усунути) вплив інших факторів, умовно зафіксувавши їх шляхом відповідних розрахунків на одному і тому ж рівні.

Характеристики

Тип файла
Документ
Размер
4,8 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6989
Авторов
на СтудИзбе
262
Средний доход
с одного платного файла
Обучение Подробнее
{user_main_secret_data}