181009 (685702), страница 2

Файл №685702 181009 (Економічне прогнозування) 2 страница181009 (685702) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Наприклад, якщо часовий інтервал m = 10 місяців, а сума ваг = 0,90 , то . Тобто, при a = 0,2 десять членів динамічного ряду визначать 90% величини експоненційної середньої.

При прогнозуванні процесу вдаються до багаторазового згладжування. Якщо період упередження v = 1, то використовують подвійне згладжування. Експоненційна середня другого порядку визначається за такою ж самою рекурентною формулою на основі згладженого ряду :

.

Якщо припустити наявність лінійного тренда, прогнозний рівень Yt+1 можна розрахувати за формулою :

Довірчі межі прогнозного рівня визначаються традиційно:

де дисперсія рівнів первинного динамічного

ряду; t— квантиль розподілу Стьюдента для ймовірності ( 1 - ).

Очевидно, що за умови значної варіації рівнів динамічного ряду довірчі межі будуть досить широкими.

Базову модель експоненційного згладжування можна використати при моделюванні рядів, які мають сезонну компоненту.

    1. Оцінювання сезонної компоненти

Сезонні коливання формуються під впливом не лише природно-кліматичних, але й соціально-економічних факторів. Сила і напрям дії окремих факторів формує різну конфігурацію сезонної хвилі. За своїм характером сезонна компонента може бути адитивною або мультиплікативною. Для адитивної компоненти характерні сталі коливання навколо середнього рівня чи тренда, для мультиплікативної — зростання амплітуди коливань з часом.

Кожний рівень ряду уt , належить до певного сезонного циклу s, Довжина якого становить 12 місяців, або 4 квартали. Відношення Yt до середнього рівня за цикл називається індексом сезонності:

.

За умови, що вплив несезонних факторів еліміновано, середня з iндексіву j-го циклу становить 1, або 100 % .

У нестаціонарних рядах замість середньої використовують лі-н'ю тренда Yt = y(t), яка плавно проходить через ряд динаміки і , як і середня , елімінує його нерівномірності. Сукупність індексів Сезонності в межах циклу характеризує сезонний ритм.

Прогнозування сезонних процесів ґрунтується на декомпозиції динамічного ряду. Припускають, що у майбутньому збережеться тенденція і такий же характер коливань. За таких умов прогноз на будь-який місяць (квартал), визначений методом екстра-поляціїтренда, коригується індексом сезонності: , де v — період упередження. Скажімо, поквартальна динаміка обсягів імпорту пального (тис. т) за два роки (n = 8, t1 = -3,5, tn = 3,5) описується трендом Yt = 923,7 + 33,8t, за яким теоретичний обсяг імпорту у восьмому кварталі становить 1042,0 тис.т, а в 1-му кварталі наступного року (v=1) передбачається Yt+v= 1042,0 + 33,8 * 1 = 1075,8 . Якщо середній індекс сезонності 1-го кварталу It = 1,34, то скоригований на сезонність прогнозний рівень дорівнює ,= 1,34 - 1075,8 = 1441,6 тис.т.

Динаміка більшості показників не виявляє чітко вираженої тенденції розвитку. Через постійний перерозподіл впливу факторів, які формують динаміку процесу, змінюється інтенсивність динаміки, частота та амплітуда коливань. До таких фактичних даних більш еластичною виявляється ковзна середня, інтервал згладжування якої дорівнює сезонному циклу (4 або 12). Коригування ковзної середньої на сезонність здійснюється так само, як коригування лінійного тренда.

Ha використанні експоненційної середньої ґрунтується ceзонно-деколіпозиційна модель Холта-Вінтера, в якій поєднуються моделі стаціонарності, лінійності та сезонності. Послідовність операцій така:

1. Визначаються індекси сезонності It

2. Ряд динаміки фільтрується від сезонних коливань діленням yt на коефіцієнт сезонності з лагом s; ряд ut = yt : It-s називається декомпозиційним.

3. Перші різниці декомпозиційного ряду bt = (ut – ut-1 ) розглядаються як характеристики лінійного тренда.

Кожна з компонент моделі згладжується за допомогою експоненційної середньої. При комбінації лінійної та сезонно-адитивної моделей тренда:

Значення параметрів згладжування A, D і C в системі Statistica за умовчування визначаються на рівні 0,1, в [10] рекомендуються: A = 0,2; B = 0,2; C = 0,5.

За умови ізольованої оцінки трьох факторів прогноз на період упередження v визначається як скоригована на сезонність сума прогнозного рівня ut , і лінійного тренда:

.

При комбінації лінійного та сезонно-мультиплікативного трендів кінцевий прогноз визначається за формулою :

, де .

    1. Типи трендових моделей

При моделюванні динамічних процесів причинний механізм формування властивих їм особливостей у явному вигляді не враховується. Будь-який процес розглядається як функція часу. Певна річ, час не є фактором конкретного соціально-економічного процесу, змінна часу t просто акумулює комплекс постійно діючих умов і причин, які визначають цей процес.

У моделях динаміки процес умовно поділяється на чотири складові:

  • довгострокову, детерміновану часом еволюцію — трендf(t));

  • періодичні коливання різних частот Ct;

  • сезонні коливання St;

  • випадкові коливання et.

Зв'язок між цими складовими представляється адитивно (сумою) або мультиплікативно (добутком):

Така умовна конструкція дає змогу, залежно від мети дослідження, вивчати тренд, елімінуючи коливання, або вивчати коливання, елімінуючи тренд. При прогнозуванні здійснюється зведення прогнозів різних елементів в один кінцевий прогноз.

Характерною властивістю будь-якого динамічного ряду є залежність рівнів: значення уt , певною мірою залежить від попередніх значень: i т. д. Для оцінювання ступеня залежності рівнів ряду використовують коефіцієнти автокореляції rр з часовим лагом p = 1, 2, ..., т.

Коефіцієнт rр характеризує щільність зв'язку між первинним рядом динаміки і цим же рядом, зсуненим на p моментів. У табл. 2.1 наведено зсунені ряди динаміки з лагами p - 1, 2, 3. Як видно, із збільшенням лага p кількість пар корельованих рівнів зменшується. Так, при p = 1 довжина корельованих рядів менша за первинний ряд на один рівень, при p = 2 — на два рівні і т. д. Через це на практиці при визначенні автокореляційної функції дотримуються правила, за яким кількість лапв .

Таблиця 2.1

Змінна часу t

Рівень ряду у

р=1

р = 2

р = 3

1

2

З

n-2

n-1

n

Значення коефіцієнта автокореляції rр визначається величиною лага p і не виходить за межі ±1:

де

Послідовність коефіцієнтів rр називають автокореляційною функцією і зображують графічно у вигляді автокорелограми з абсцисою p та ординатою rp.

За швидкістю згасання автокореляційної функції можна зробити висновок про характер динаміки. Найчастіше використовується значення r1. Характеризуючи ступінь залежності двох послідовних членів ряду, коефіцієнт автокореляції є мірою неперервності цього ряду. Якщо , то ряду динаміки властива тенденція розвитку, якщо — рівні ряду незалежні. Відносно високі значення коефіцієнта автокореляції при p = k, 2k, 3k, … свідчать про регулярні коливання.

На відміну від детермінованої складової випадкова складова не зв'язана із зміною часу. Аналіз цієї складової є основою перевірки гіпотези про адекватність моделі реальному процесу. За умови, що модель вибрано правильно, випадкова складова являє собою стаціонарний процес з математичним сподіванням M(e) = 0 і дисперсією

де m — число параметрів функції.

Для оцінювання стаціонарності випадкової складової використовують циклічний коефіцієнт автокореляції першого порядку r1. Корелюються ряди залишкових величин: та

Припускаючи, що , формула розрахунку спрощується:

.

Існують таблиці критичних значень циклічного коефіцієнта автокореляції для додатних і від'ємних значень (додаток 5). Якщо фактичне значення r1 менше за критичне, автокореляція вважається неістотною, а випадкова складова — стаціонарним процесом. У разі, коли фактичне значення r1 перевищує критичне, можна зробити висновок про неадекватність детермінованої складової реальному процесу.

Важливою складовою динамічних процесів є тенденція середньої, тобто основний напрям розвитку. B аналізі динамічних рядів тенденцію представляють у вигляді плавної траєкторії та описують певною функцією, яку називають трендом Yt = f(t), де t= 1, 2, … , n — змінна часу. Ha основі такої функції здійснюється вирівнювання динамічного ряду і прогнозування подальшого розвитку процесу.

Процедура вирівнювання динамічних рядів включає два етапи: обґрунтування (вибір) типу функції, яка б адекватно описувала характер динаміки, та оцінювання параметрів функції. Ha практиці переважно використовують функції, параметри яких мають конкретну інтерпретацію залежно від характеру динаміки. Найбільш поширені поліноми (многочлени), різного роду експоненти та логістичні криві. Так, параметри полінома p-ro ступеня Yt = a + bt + ct2 + dt3характеризують:

Характеристики

Тип файла
Документ
Размер
4,8 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6989
Авторов
на СтудИзбе
262
Средний доход
с одного платного файла
Обучение Подробнее
{user_main_secret_data}