11 (682880), страница 3

Файл №682880 11 (Контроль качества сгорания топлива в методических нагревательных печах) 3 страница11 (682880) страница 32016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Проволочные чувствительные элементы имеют ряд недостатков, поэтому в настоящее время созданы чувствительные элементы на носителях, где функции терморезистора и нагревателя разделены частично или полностью.

Измерительные ячейки термохимического газоанализатора приведены на рис. 3.

Р ис. 3. Измерительные ячейки термохимического газоанализатора:

а — без катализатора: 1 — платиновая нить; 2 — держатель; 3 — измерительная ячейка;

б — чувствительный элемент расположен в катализаторе: 1 — чувствительный элемент; 2 — измерительная ячейка; 3 — катализатор; 4 — термостат;

в — чувствительный элемент расположен в керамической трубке; 1 — камера; 2 — катализатор; 3—электриче­ская спираль; 4 — чувствительный элемент; 5 — керамическая трубка

В ячейке (рис. 3, а) проба АГС проходит через измерительную ячейку 3, в которой размещен ЧЭ в виде платиновой нити 1, укрепленной на держателях 2. Платиновая нить нагревается электрическим током до температуры, при которой происходит реакция. Выделившаяся теплота сгорания повышает температуру нити, увеличение температуры пропорционально концентрации определяемого компонента. Повышение температуры измеряется по изменению сопротивления нити, включенной, как правило, в схему электрического четырехплечего моста.

В ячейке (рис. 3, б) предусмотрено использование катализатора 3, в котором размещен ЧЭ 1. Обычно такая измерительная ячейка 2 размещается в термостате 4. При протекании пробы АГС через измерительную ячейку на катализаторе происходят соответствующая реакция, сопровождающаяся выделением тепла. Изменение температуры катализатора измеряется ЧЭ. Такой тип измерительной ячейки реализован в газоанализаторе ТХГ-5, где используются две измерительные ячейки: рабочая, через которую пропускают пробу АГС, и сравнительная с инертным газом.

Ячейка (рис. 3, в) представляет собой камеру 1, обогреваемую электрической спиралью 3. В камере расположена керамическая трубка 5, часть внешней поверхности которой покрыта катализатором 2. В керамической трубке находится ЧЭ 4, измеряющий ее температуру. Такой тип измерительной ячейки используют при создании газоанализатора на кислород в азоте.

Для обеспечения термохимического эффекта к пробе АГС прибавляют водород, являющийся вспомогательным газом для протекания реакции Н+1/2О2 = Н2О.

В измерительную ячейку помещена фарфоровая трубка, обогреваемая электрическим током. Каталитическое сжигание водорода происходит на измерительных спаях термостолбиков («10 термопар, соединенных последовательно).

Преимущества термохимического метода: высокая чувствительность и возможность определять концентрации практически всех горючих газов и паров. Недостатки — вероятность отравления чувствительного элемента каталитическими ядами, а также потребность во вспомогательном газе.

Многочисленные термохимические сигнализаторы и газоанализаторы используют для определения довзрывных концентраций горючих газов, а также горючих компонентов в отходящих газах тепловых объектов. Поскольку необходимым условием протекания окислительной реакции является наличие кислорода в пробе АГС, метод позволяет определять концентрацию молекулярного кислорода в смеси с горючими газами.

Газоанализаторы ВТИ-2, ГХЛ-1, ГХЛ-2.

Предназначены для раздельного определения концентрации кислотных газов (СО22, H2S и др.), кислорода и монооксида углерода, суммы непре­дельных углеводородов (СnH2n) и водорода в пределах от 0 до 100 % (об.). Кроме того, с помощью этих газоанализаторов опре­деляют сумму предельных углеводородов (СnН2n+2).

Газоанализаторы ГХЛ-1 и ГХЛ-2 — новые объемно-химиче­ские газоанализаторы. В ГХЛ-1 предусмотрено использование сжатого воздуха для прокачки пробы АГС, в ГХЛ-2 — прокачка ручная.

По сравнению с ВТИ-2 эти газоанализаторы более удобны в эксплуатации, обеспечивают высокую точность анализа, позво­ляют снизить энергозатраты и время анализа.

Электрохимические методы

Из электрохимических методов анализа состава газов для определения концентрации молекулярного кислорода наибольшее распространение получили полярографический, кондуктометрический, кулонометрический и потенциометрический методы

анализа.

Полярографический метод

Основан на поляризации погруженного в электролит индикаторного или вспомогательного электрода при наложении напряжения от внешнего или внутрен­него источника.

Под поляризацией электрода понимают изменение значения равновесного электродного потенциала при прохождении через электрод постоянного электрического тока. Интенсивность этого процесса оценивают по значению , соответствующему разности между равновесным потенциалом и потенциалом поляризованного электрода.

Напряжение Е, приложенное к цепи, распределяется в ней в соответствии с законом Ома. Применительно к полярографической ячейке это означает, что в каждый данный момент значение налагаемого на электроды поляризующего напряжения равно сумме скачков потенциала на аноде и катоде , а также падению напряжения в растворе электролита Ir:

(3)

где I — ток, проходящий через полярографическую ячейку; r — сопротивле­ние раствора электролита.

В зависимости от того, будет поляризующийся электрод катодом или анодом электролитической ячейки, причиной поляризации явятся различные восстановительные или соответственно окислительные процессы, которые вызовут сдвиг потенциала электрода соответственно в отрицательную или положительную сторону.

При поляризующемся аноде плотность тока сравнительно велика на катоде и очень мала на аноде. В этом случае потен­циал анода принимают за нуль и он служит началом отсчета для потенциала катода. Тогда предыдущее равенство можно записать следующим образом:

(4)

При малой силе тока ( А), протекающего через полярографическую ячейку, и сопротивлении раствора электролита, не превышающем несколько кОм, падение напряжения в растворе составит несколько мВ. Поэтому практически

(5)

Если обеспечить достаточно высокую электропроводность (малое сопротивление) раствора, то можно считать, что числовое значение поляризующего напряжения равно потенциалу поляри­зующего электрода.

При неполяризующемся катоде плотность тока сравнительно велика на аноде и очень мала на катоде. В этом случае потенциал катода принимают за нуль и он служит началом отсчета для потенциала анода. При анодной поляризации

(6)

т. е. потенциал анода зависит от напряжения, поданного на полярографическую ячейку.

Всякий процесс, в том числе и процесс поляризации электрода, может быть изображен в виде графика, на котором координаты соответствуют основным переменным, характеризующим ход этого процесса.

В полярографии такими переменными являются налагаемое на электроды напряжение и электрический ток, проходящий в цепи полярографической ячейки.

График, характеризующийся зависимостью тока от напряже­ния, называют вольт-амперной характеристикой. В полярографии такой график называют поляризационной кривой или полярограм-мой и описывают видоизмененным уравнением Нернста:

(7)

где Е — разность между равновесным потенциалом и потенциалом поляризован­ного электрода; R — газовая постоянная; Т—абсолютная температура; п — число электронов, участвующих в суммарной электрохимической реакции; F — число Фарадея; I — ток, проходящий через полярографическую ячейку; IД — диффузионный ток.

На рис. 4 представлена полярограмма раствора, содержащего один определяемый компонент. При наложении на электроды увеличивающейся разности потенциалов через электролит, в кото­ром растворен определяемый компонент пробы АГС, протекает небольшой электрический ток. Однако при поляризации индика­торного электрода ток быстро увеличивается, достигает постоян­ного (предельного) значения, не зависящего от потенциала электрода.

Участок 1 полярограммы, на котором ток возрастает, называют полярографической волной, а участок 2 — площадкой диффузионного тока.

Рис. 4. Ампер-вольтняя характеристика полярографической ячейки

Рис. 5. Схема плолярографа:

1 — анод (слой ртути на дне ячейки); 2— электролит; 3 — катод (ртутный капельный электрод); 4 — микроамперметр; 5 — рео­стат; 6— источник питания

Потенциал электрода при поляризующем токе, равном половине предельного тока называют потенциалом полуволны. Потенциал полуволны — важная характеристика вещества, так как каждое вещество вследствие своих структурных особенностей восстанавливается при определенном его значении. По потенциалу полуволны определяют вид вещества, а по пре­дельному току (высоте полярографической волны) — его концен­трацию в растворе электролита полярографической ячейки.

На рис. 5 изображена схема полярографа, состоящего из полярографической ячейки, устройства для подачи потенциала — источника питания 6, реостата 5 и микроамперметра 4.

Полярографическая ячейка представляет собой стеклянный сосуд с электролитом 2. В ячейке помещены два электрода: катод 3 и анод 1. Катод — ртутный капельный электрод — имеет малую поверхность, через которую при электрохимическом восста­новлении протекают большие токи. Вследствие этого потенциал катода отличается от равновесного потенциала, необходимого для проведения электрохимической реакции, т. е. происходит поляризация катода.

В качестве анода (электрода сравнения) применяют хлор-серебряный, каломельный электроды или электрод с большой поверхностью, часто слой ртути 1, находящийся на дне ячейки. Большая поверхность электрода сравнения нужна для снятия явления поляризации.

Напряжение (2—4 В) от внешнего источника питания 6 через реостат 5 подается на ртутные электроды полярографи­ческой ячейки. Ток, проходящий через ячейку, измеряют микро­амперметром 4, а напряжение, подаваемое на ячейку, регулируют перемещением движка на реостате 5 от нуля (крайнее нижнее положение) до максимума (крайнее верхнее положение).

При электролизе происходят следующие процессы: перенос деполяризатора из раствора на поверхность электрода, электро­химическая реакция, выделение конечных продуктов реакции на поверхность электрода или выделение их обратно в раствор.

Скорость электрохимической реакции зависит в основном от скорости переноса деполяризатора к поверхности электрода.

Перенос деполяризатора в растворе к электроду осуществляется диффузией, конвекцией и миграцией.

Характеристики

Тип файла
Документ
Размер
5,7 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6381
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее